

AFRL-RW-EG-TR-2011-159

BASIC DETONATION PHYSICS ALGORITHMS

Douglas V. Nance

AFRL/RWPC 101 W. Eglin Blvd. Eglin AFB, FL 32542-6810

December 2011

INTERIM REPORT

DISTRIBUTION A. Approved for public release, distribution unlimited. 96th ABW/PA Approval and Clearance # 96ABW-2011-0548 dated 28 November 2011.

AIR FORCE RESEARCH LABORATORY MUNITIONS DIRECTORATE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation, or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 96th Air Base Wing, Public Affairs Office, and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) < http://www.dtic.mil/dtic/index/html>.

AFRL-RW-EG-TR-2011-159 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT

FOR THE DIRECTOR:

Strategic Planning and Assessment Division

ORIGINAL SIGNED
ORIGINAL SIGNED

Craig M. Ewing, DR-IV, PhD
Technical Adviser
ORIGINAL SIGNED
Douglas V. Nance
Program Manager

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any

			it does not display a currently va IE ABOVE ADDRESS.	alid OMB control nun	nber.		
	TE (DD-MM-YY	<i>YY)</i> 2. REPO	ORT TYPE	_		3. DATES COVERED (From - To)	
-	-12-2011		INTERIN	М		01-10-2011 - 31-10-2011	
4. TITLE AND		*.1			ba. C	CONTRACT NUMBER	
Basic Detonat	ion Physics Al	gorithms				N/A	
					5b. G	GRANT NUMBER	
						N/A	
					5c. P	ROGRAM ELEMENT NUMBER	
						62602F	
6. AUTHOR(S)					5d. P	PROJECT NUMBER	
Douglas V. N	ance				2502		
					5e. T	ASK NUMBER	
						67	
					5f. W	VORK UNIT NUMBER	
						63	
7 PERFORMIN	IG ORGANIZATI	ON NAME(S) A	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION	
AFRL/RWPC		ON NAME (O) AI	ADDITECO(EC)			REPORT NUMBER	
101 W. Eglin						AFRL-RW-EG-TR-2011-159	
Eglin AFB, F							
		G AGENCY NAM	ie(s) and address(es)		10. SPONSOR/MONITOR'S ACRONYM(S)	
AFRL/RWPC 101 W. Eglin						AFRL-RW-EG	
Eglin AFB, F						11. SPONSOR/MONITOR'S REPORT	
Egini 7 ii B, 1 E 323 12 0010				NUMBER(S)			
						AFRL-RW-EG-TR-2011-159	
	ION/AVAILABILI						
	Distribution A: Approved for public release, distribution unlimited. (96ABW-2011-0548)				548)		
28 Nov 11							
13. SUPPLEME	NTARY NOTES						
NONE							
14. ABSTRACT							
						o simulate the detonation of a condensed splitting scheme due to Glaister. This report	
						the source code. We also include a discussion	
						in the condensed explosive.	
15. SUBJECT 1	ERMS						
	plosive, flux, j	acobian					
,	1 ··· /, J						
			143 118474	T40 NU			
	CLASSIFICATIO		17. LIMITATION OF ABSTRACT	18. NUMBER OF		IAME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE		PAGES	_	glas V. Nance "ELEPHONE NUMBER (Include area code)	
UNCLAS	UNCLAS	UNCLAS	UL	102	I JU. I	LLLI HOIVE INDIVIDED (IIICIUUE area code)	

TABLE OF CONTENTS

Sect	tion		Page
1	INTI	RODUCTION	1
	1.0	Numerical Detonation Physics	1
	1.1	A Map for this Report	2
2	GOV	VERNING EQUATIONS	4
	2.1	The Reactive Euler Equations	4
	2.2	Mixture Equations of State	5
	2.3	Solid Explosive Equations of State	6
	2.4	Detonation Products Equation of State	8
3	SYS	TEM EIGEN-STRUCTURE	10
	3.1	Flux Jacobian Matrices	10
	3.2	Eigenvalues	12
	3.3	Eigenvectors	13
4	BUII	LDING THE NUMERICAL SCHEME	18
	4.1	Pressure Derivatives	18
	4.2	Finite Volume Discretization	21
	4.3	Temporal Discretization	22
	4.4	The Numerical Flux	23
	4.5	A Higher Order Scheme	25
	4.6	Boundary Conditions	27
5	PAR	TICLE MOTION	28
	5.1	Coupling Terms	28
	5.2	Particle Laws of Motion	29
6	RES	ULTS	32
	6.1	Simple Plane Wave Detonation	32
	6.2	Detonation of Pure HMX	35
	63	Detonation of HMX Containing Metal Particles	37

7	CONCLUSIONS	39
8	RECOMMENDATIONS	39
REFE	ERENCES	40
APP.	A SOURCE CODE	42

LIST OF FIGURES

Figure	e	Page
1	Interface Notation	23
2	Problem 1 Detonation Field Density, Time 3.0	33
3	Problem 1 Detonation Field Velocity, Time 3.0	33
4	Problem 1 Detonation Field Pressure, Time 3.0	34
5	Problem 1 Detonation Field Reaction Progress Variable, Time 3.0	34
6	Numerical Detonation Solution Hayes-I/JWL in HMX at 3 $\mu s.$ Horizontal Axis is Distance in Meters	36
7	Numerical Detonation Solution Hayes-II/JWL in HMX at 3 $\mu s.$ Horizontal Axis is Distance in Meters	36
8	Radial Locations for Steel Particles Embedded in a Mass of Detonating HMX	37
9	Radial Velocities for Steel Particles Embedded in a Detonating Mass of HMX	38

1 INTRODUCTION

Steady increases in large scale circuit integration indicate that the Twenty-First Century will promise significant advances in High Performance Computing (HPC) machinery. Today, one may obtain desk-side Linux systems containing eight processors (and thirty-two or more cores) for comparatively reasonable prices. Moreover, common laptop systems wield significant computing power with central processing unit (CPU) speeds in the neighborhood of 3.0 GHz (maybe more by the time this report is certified) and random access memory (RAM) storage capability in hundreds of Gigabytes (GB). In the realm of "Big Iron", the Department of Defense (DoD) High Performance Computing (HPC) Modernization Office recently began operating clusters each with tens of thousands of cores, and the Department of Energy laboratory community has even larger systems. These developments have significant implications for the relatively small Computational Physics research community. This research community represented by disciplines such as high energy physics, quantum chemistry and computational fluid dynamics has an ever increasing need for computer memory and for parallel processing speed.

Computational Fluid Dynamics (CFD) has drawn on HPC resources for many years to help with aircraft and fluid system design. Some problems like high Reynolds number direct numerical simulations are still computationally inaccessible, but these situations are fewer in number than just one decade ago. For instance, we routinely solve problems involving the large eddy simulation (LES) of compressible turbulence with good results. Older techniques such as Reynolds-Averaged Navier-Stokes (RANS) simulation now teeter on the brink of obsolescence. Moreover, massive computing power now permits us to invade new territory previously relegated to analytical solutions supported by many assumptions and highly simplified, under-resolved computational studies. Quantum physics now benefits widely from HPC science in the areas of quantum chemistry and molecular dynamics. These areas of physics now impact design engineering. Although it occupies only a very small part of the research community, detonation physics, a close relative of CFD, can benefit handsomely from ever more powerful computational techniques and equipment.

1.0 Numerical Detonation Physics

Numerical Detonation Physics applies many of the same computational techniques employed by CFD. The primary reason is because detonations are powered by the propagation of the detonation wave, a powerful shock wave that transforms the unreacted explosive into detonation product species. Like the shock waves encountered in transonic and supersonic flow, detonation waves must be "captured" in the material field by using special numerical techniques. Gas phase detonations, e.g., the explosive burn of acetylene gas, are true detonations but they lack some of the complexity associated with the detonation of condensed (solid or liquid) explosives. Gas phase detonation is usually initiated by high temperature. It follows that temperature is the dominant term in the reaction rate expression. One should also not make light of the fact that we actually have

good, quantitative models for gas phase detonation chemistry. The science behind the detonation of condensed explosives is not so evolved.

The detonation of a condensed explosive is most often modeled as a shock-driven process. Macroscopic observation seems to indicate that a shock wave is often required to detonate these explosives. Many solid explosives simply "burn" when exposed to a flame, at least when considered over relatively short time periods. Exposure to a shock impulse is often needed to initiate the run to detonation for an explosive. This physics problem is complicated greatly because of the smallness of scales concerning the detonation wave. The detonation wave covers a thin region, a fraction of a millimeter for most ideal or Carbon-Hydrogen-Nitrogen-Oxygen (CHNO) explosives like Trinitrotoluene (TNT). The head of the detonation wave lies at the entrance to the detonation reaction zone. This is the tiny region in space where the detonation chemical reactions take place. For condensed explosives, we do not know these chemical reactions. We know only, in some sense, their end products, and if we detonate two like samples of an explosive, we may obtain two different product spectrums. For this reason, condensed explosives are relatively crude chemical mixtures. Still, the detonation process itself may be addressed by the direct application of the conservation laws for mass, momentum and energy. This same approach is used for CFD problems, but for explosives we are required to apply equations of state for both the unreacted explosive material and the detonation products. It is also important that we consider heterogeneous explosives. These materials contain non-explosive additives like plastic binders and metal particles. In future treatments of this problem, we will also be required to treat the material behavior (material strength versus applied stress) of the solid explosive in response to shock excitation.

1.1 A Map for this Report

This report is intended to assist in the process of transitioning detonation physics algorithms into the Large Eddy Simulation with LInear Eddy Modeling in 3 Dimensions (LESLIE3D) multiphase physics computer program. The discussions that follow describe the algorithms applied in the source code included in Appendix A. Although these algorithms are tested and validated to some extent, it is nont recommended that they be coded directly into LESLIE3D. Rather, the Harten, Lax and van Leer (HLL) family of algorithms should be used for flux difference splitting in lieu of Roe's method. Moreover, inhomogeneous terms in the equations should be addressed through Strang splitting. ¹

The report is organized as follows. In Section 2, we describe the governing equations for the detonation problem based upon the work of Xu et al.² Within this set of equations, we add the terms coupling the detonation flow field to the particle field. We show that reaction rate, particle coupling and geometric effects may be incorporated as source terms. The equations of state used for the solid explosive and for the detonation products are also presented in this section. The advective terms, of critical importance in the shock-capturing scheme, are clearly delineated. Section 3 describes the eigenstructure for the system of governing equations. The flux Jacobian matrix is developed

for the reactive Euler equations adapted for a real gas equation of state. Then we develop a set of eigenvalues and eigenvectors needed in order to accurately capture the detonation wave. In Section 4, we discuss the overall numerical scheme and temporal discretization procedure used in our detonation computer program. We also discuss the development of the numerical flux vector in detail. Section 5 contains the terms governing the motion of Lagrangian particles including the drag laws. In Section 6, we provide the results for three example calculations. After performing a calculation to verify proper code performance, we simulate the detonation of a spherical mass of HMX loaded with metal particles. We show a series of detonation waveforms for this explosive, and we go on to include the resulting particle trajectories and velocities. We also make some basic comparisons between the results produced by our computer program to archival explosive performance data for HMX. Finally, in Section 7, we draw several important conclusions from our development. We also make recommendations for follow-on work needed to support the installation of detonation physics algorithms in LESLIE3D.

2 GOVERNING EQUATIONS

To address the detonation problem, we follow a body of research documented in the general scientific literature.² By doing so, we can escape some of the uncertainties associated with the older programmed burn detonation models.³ We do make a departure from the core reference in that our development disregards the issue of compaction in the solid explosive.² Instead, it is assumed that our explosive is a solid mass at or near the theoretical maximum density. The present approach allows the reaction zone to be clearly resolved within the limitations of the grid refinement. As a result, the forces applied to particles may be resolved more accurately.

2.1 The Reactive Euler Equations

The reactive Euler equations are frequently used to represent detonation flow fields based upon a reaction progress equation and a mixture equation of state.² The equations for the conservation of mass, momentum, energy and reaction progress may be readily expressed in vector form. The equation for a detonation field set in one space dimension may be written as

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{S}_G + \mathbf{S}_{Rx} + \mathbf{S}_P \tag{2.1.1}$$

where

$$\mathbf{U} = [\rho, \rho u, E, \rho \lambda]^{T}$$
(2.1.2)

is the vector of conserved variables, and

$$\mathbf{F} = [\rho u, \rho u^2 + P, u(E+P), \rho u \lambda]^T$$

(2.1.3)

is the flux vector. Also,

$$\mathbf{S}_G = -\frac{j}{r} [\rho u, \rho u^2, u(E+P), \rho u \lambda]^T$$
 (2.1.4)

$$\mathbf{S}_{Rx} = [0, 0, 0, \rho r]^T$$
 (2.1.5)

$$\mathbf{S}_{P} = [0, \dot{F}_{s}, \dot{Q}_{s}, 0]^{T}$$
 (2.1.6)

We may also write the total energy per unit volume as

$$E = \rho e + \frac{\rho}{2} u^2 \tag{2.1.7}$$

where e is the internal energy per unit mass. The equation of state may be written in the general form

$$P = P(\rho, e, \lambda) \tag{2.1.8}$$

where λ is the reaction progress variable.

Vectors S_G , S_{Rx} and S_P contain source terms; as we have shown, these nonhomogenous terms are kept on the right hand side of the reactive Euler equations and may be treated independently from the advective terms. Vector S_G contains the geometric source terms that allow the system to be configured for planar, cylindrical or spherical one-dimensional flow. To adapt (2.1.1) for planar flow, we need only set j=0 in (2.1.4). We may adapt (2.1.1) for cylindrical or spherical one-dimensional flow by setting j=1 or j=2, respectively. Vector S_{Rx} contains the reaction rate source term governing the rate of progress for the detonation reaction. The reaction rate r may be written in many different forms depending on the explosive. The term we have chosen to use for HMX may be written as

$$r = k \left(\frac{P}{P_{CJ}}\right)^{N} (1 - \lambda)^{\nu} \tag{2.1.9}$$

where P_{CJ} is the Chapman-Jouquet pressure for HMX; k, N and ν are constants chosen to fit experimental data. Note that this reaction rate law is dependent upon both pressure and reaction progress. The source term vector \mathbf{S}_P has been added to the system by the author. It represents the dynamic coupling between the detonation products and a field of discrete, massive Lagrangian particles. The coupling is based upon both momentum and thermal effects. The specific forms of the coupling terms are presented in a later section.

2.2 Mixture Equations of State

For the detonation problem, relevant equations of state are cast in the form of (2.1.8). This form is complicated since pressure varies as a function of density, internal energy per unit mass and reaction progress. In this analysis, the reaction progress variable is analogous to a species mass fraction commonly used in reacting gas flows. Moreover, it is used to compute the specific internal energy for the detonating mixture by forming a weighted sum of the equation of state (EOS) for the solid explosive and the EOS for the detonation products. The resulting expression for specific internal energy is called the mixture EOS.² Our governing equations (2.1.1), discretized in accordance with the finite volume method, rely upon the mixed cell approach. Each flow cell is assumed to contain a mixture – part solid explosive and part detonation products. The mixture fraction is given by the reaction progress variable λ , and λ is defined as the mass fraction of the

detonation products in the cell. The density within a cell is the sum of the densities for the solid (s) and gas (g) phases, respectively, i.e.,

$$\rho = \rho_s + \rho_g \tag{2.2.1}$$

so λ is given by

$$\lambda = \frac{\rho_g}{\rho} \tag{2.2.2}$$

and

$$\frac{\rho_s}{\rho} = 1 - \lambda \tag{2.2.3}$$

Hence, we have that λ is the mass fraction of the gas (detonation products) phase. We also assert that the internal energy for a given finite volume cell may be expressed as

$$e = \lambda e_g + (1 - \lambda) e_s \tag{2.2.5}$$

where e_g and e_s are the specific internal energies for the gas and solid phases, respectively. This mixing rule differs from the archived approach based upon specific volume, but to date, we have not been successful in applying Xu's closure. Assume the same pressure for both phases with each phase having its own equation of state, i.e.,

$$e_g = e_g(\rho_g, P) \tag{2.2.6}$$

$$e_s = e_s(\rho_s, P) \tag{2.2.7}$$

with ρ_g and ρ_s given by (2.2.2) and (2.2.3).

2.3 Solid Explosive Equations of State

In the previous section, we showed that one part of our mixture EOS represents the solid explosive. In the discussions that follow, we apply two different forms of an EOS originally developed by Hayes.⁸ The first form of this EOS (Hayes-I) works very well for mechanical effects.² The Hayes-I EOS is given as

$$e_{s}(\rho_{s}, P) = \frac{P - P_{0}}{g} - \left(t_{3} - \frac{P_{0}}{\rho_{s0}}\right) \left(1 - \frac{\rho_{s0}}{\rho_{s}}\right) + t_{4} \left\{ \left(\frac{\rho_{s}}{\rho_{s0}}\right)^{N-1} - (N - 1)\left(1 - \frac{\rho_{s0}}{\rho_{s}}\right) - 1 \right\}$$
(2.3.1)

where

$$g = \Gamma_0 \rho_{s0} \tag{2.3.2}$$

$$t_3 = \frac{C_{vs} T_0 g}{\rho_{s0}} \tag{2.3.3}$$

$$t_4 = \frac{H_1}{\rho_{s0} N(N-1)} \tag{2.3.4}$$

In equations (2.3.1) through (2.3.4), P_0 , T_0 and ρ_{s0} are the ambient pressure, temperature and unloaded solid density. Γ_0 is the Gruneisen parameter, and C_{vs} is the constant volume specific heat for the solid. H_1 and N are parameters used to fit the EOS to data. Table 1 lists all of the required parameters for this EOS.²

Table 1 - Hayes EOS Data for HMX

H_1	$1.3 \times 10^{10} \text{N/m}^2$			
N	9.8			
C_{vs}	$1.5 \times 10^3 \text{ J/(Kg K)}$			
Γ_0	1.105			
P_0	101325 Pa			
ρ_{s0}	$1.9 \times 10^3 \text{ Kg/m}^3$			
T_0	300 K			

The second form of the Hayes EOS (Hayes-II) functions well mechanically but also incorporates temperature. The Hayes-II EOS is given as

$$e_{s}(\rho_{s}, P) = \frac{1}{g} \left[P - P_{0} - \frac{H_{1}}{N} \left\{ \left(\frac{\rho_{s}}{\rho_{s0}} \right)^{N} - 1 \right\} \right] - \left(t_{3} - \frac{P_{0}}{\rho_{s0}} \right) \left(1 - \frac{\rho_{s0}}{\rho_{s}} \right) + t_{4} \left\{ \left(\frac{\rho_{s}}{\rho_{s0}} \right)^{N-1} - (N-1) \left(1 - \frac{\rho_{s0}}{\rho_{s}} \right) - 1 \right\}$$

$$(2.3.5)$$

This version of the Hayes EOS may be derived by using Reference 1; however, additional terms are incorporated in (2.3.5) to match the behavior of (2.3.1) at ambient pressure. The temperature of the solid explosive is given by

$$T(\rho_s, P) = \frac{1}{t_3} \left(P - P_0 - \frac{H_1}{N} \left\{ \left(\frac{\rho_s}{\rho_{s0}} \right)^N - 1 \right\} \right) + T_0$$
 (2.3.6)

Together, equations (2.3.5) and (2.3.6) constitute a *complete* equation of state for a solid explosive. These equations use the same data as is listed in Table 1 for HMX. The Hayes-II EOS also performs very well in one-dimensional detonation studies for solid HMX.

2.4 Detonation Products Equation of State

As equation (2.2.5) indicates, part of the mixture EOS must address the gaseous products resulting from the detonation of the solid explosive. For the purposes of this work, we have selected the Jones-Wilkins-Lee (JWL) EOS.¹ The JWL EOS is somewhat controversial, but nevertheless, it is widely applied in hydrocodes. Also, many explosives have been characterized for this EOS. We apply the JWL EOS in the following form.

$$e_{g}(\rho_{g}, P) = \frac{1}{\omega \rho_{g}} \left[P - A \left(1 - \frac{\omega \rho_{g}}{\hat{R}_{1}} \right) \exp \left(-\frac{\hat{R}_{1}}{\rho_{g}} \right) - B \left(1 - \frac{\omega \rho_{g}}{\hat{R}_{2}} \right) \exp \left(-\frac{\hat{R}_{2}}{\rho_{g}} \right) \right] - Q + e_{0} \quad (2.4.1)$$

where A, B, ω , \hat{R}_1 and \hat{R}_2 are coefficients produced by curve-fitting for the explosive under consideration. Also, note that

$$\hat{R}_1 = R_1 \, \rho_{s0} \, , \tag{2.4.2}$$

and

$$\hat{R}_2 = R_2 \, \rho_{s0} \,. \tag{2.4.3}$$

Q is the heat of detonation for the explosive, and e_0 is the reference value for specific internal energy. There is no firm rule for determining e_0 , but we will define e_0 as

$$e_0 = C_{vg} T_0. (2.4.4)$$

Table 2 - JWL Coefficients for HMX

R_1	4.2
R_2	1.0
ω	0.3
A	7.783 x 10 ¹¹ Pa
В	$7.071 \times 10^{10} \text{Pa}$
$C_{ m vg}$	$(1.1 - 0.28 \times 10^{-3} \rho_{s0}) \times 10^{3} \text{ J/(Kg K)}$
Q	$ \begin{array}{c} [7.91 - 4.33 \ (10^{-3} \rho_{s0} \ \text{-}1.3)^2 \ \text{-}\ 0.934 \ (10^{-3} \rho_{s0} \ \text{-}1.3)] \\ \times \ 10^6 \ \mathrm{J} \end{array} $

 C_{vg} is the constant volume specific heat for the detonation products. The data used for HMX in the JWL EOS is listed in Table 2.² For the studies performed later in this work, Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

mixture EOS.		

we select one of the Hayes equations of state in combination with the JWL EOS to form a

3 SYSTEM EIGEN-STRUCTURE

3.1 Flux Jacobian Matrices

Capturing the structure of the detonation wave constitutes a difficult numerical issue involving the discretization of the advective term $\partial F/\partial U$, where

$$\mathbf{A} = \frac{\partial \mathbf{F}}{\partial \mathbf{U}} = \begin{bmatrix} \frac{\partial F_1}{\partial \rho} & \frac{\partial F_1}{\partial (\rho u)} & \frac{\partial F_1}{\partial E} & \frac{\partial F_1}{\partial \lambda} \\ \frac{\partial F_2}{\partial \rho} & \frac{\partial F_2}{\partial (\rho u)} & \frac{\partial F_2}{\partial E} & \frac{\partial F_2}{\partial \lambda} \\ \frac{\partial F_3}{\partial \lambda} & \frac{\partial F_3}{\partial (\rho u)} & \frac{\partial F_3}{\partial E} & \frac{\partial F_3}{\partial \lambda} \\ \frac{\partial F_4}{\partial \lambda} & \frac{\partial F_4}{\partial (\rho u)} & \frac{\partial F_4}{\partial E} & \frac{\partial F_4}{\partial \lambda} \end{bmatrix}$$
(3.1.1)

is called the flux Jacobian matrix. The term F_i simply denotes the ith element of the flux vector \mathbf{F} . Equation (3.1.1) is already annotated with the specific elements of \mathbf{U} . It is important to note that our equation of state is cast in a general form, so the calculation of the specific elements of (3.1.1) is made more complicated. The method for calculating these matrix entries relies heavily on the derivatives of pressure taken with respect to the conservative variables. For convenience, the pressure derivatives for this Jacobian are given below. For the three-dimensional case, the detailed derivation of these pressure derivatives is presented in Reference 11. For pressure given in the form of (2.1.8), let

$$P_{\rho} = \left(\frac{\partial P}{\partial \rho}\right)_{e,\lambda}; P_{e} = \left(\frac{\partial P}{\partial e}\right)_{\rho,\lambda}; P_{\lambda} = \left(\frac{\partial P}{\partial \lambda}\right)_{\rho,e}$$
(3.1.2)

then we may write the pressure derivatives as

$$\left(\frac{\partial P}{\partial \rho}\right)_{\rho u, E, \rho \lambda} = P_{\rho} + P_{e} \left(\frac{u^{2}}{\rho} - \frac{E}{\rho^{2}}\right) - \frac{\lambda}{\rho} P_{\lambda}$$
(3.1.3)

$$\left(\frac{\partial P}{\partial(\rho u)}\right)_{\alpha \in \Omega^{\lambda}} = -\frac{u}{\rho} P_{e} \tag{3.1.4}$$

$$\left(\frac{\partial P}{\partial E}\right)_{\rho,\rho\mu,\rho\lambda} = \frac{P_e}{\rho} \tag{3.1.5}$$

$$\left(\frac{\partial P}{\partial(\rho\lambda)}\right)_{\rho,\rho\mu,\rho\lambda} = \frac{P_{\lambda}}{\rho} \tag{3.1.6}$$

Clearly, the pressure derivatives taken with respect to the conservative variables depend on the pressure derivatives defined in (3.1.2). These derivatives, in turn, depend on the specific form of the equation of state (2.1.8). Accordingly, the derivation of the elements of (3.1.1) is a complicated process not to be presented here. Instead, the reader is referred to a work containing like, yet detailed, mathematical derivations. For completeness, the flux Jacobian matrix for (2.1.1) is given below.

$$\mathbf{A} = \begin{vmatrix} 0 & 1 & 0 & 0 \\ a^{2} - u^{2} - \beta & u \left(2 - \frac{P_{e}}{\rho}\right) & \frac{P_{e}}{\rho} & \frac{P_{\lambda}}{\rho} \\ u(a^{2} - H - \beta) & H - \frac{u^{2}}{\rho} P_{e} & u \left(1 + \frac{P_{e}}{\rho}\right) & \frac{u}{\rho} P_{\lambda} \\ -u \lambda & \lambda & 0 & u \end{vmatrix}$$
(3.1.7)

where

$$H = \frac{E + P}{\rho} \tag{3.1.8}$$

$$\beta = (H - u^2) \frac{P_e}{\rho} + \lambda \frac{P_{\lambda}}{\rho} \tag{3.1.9}$$

and the frozen speed of sound, a, is given by

$$a^2 = P_{\rho} + \frac{P P_e}{\rho^2} \,. \tag{3.1.10}$$

The derivation for this speed of sound is also archived.¹¹

We can also define a vector of non-conservative variables for the reactive Euler equations as ${\bf V}$, where

$$\mathbf{V} = [\rho, u, P, \lambda]^T. \tag{3.1.11}$$

As you may surmise, the governing equations may also be written in terms of the non-conservative variables, and we may define a non-conservative flux Jacobian matrix $\hat{\mathbf{A}}$ such that 11

$$\hat{\mathbf{A}} = \begin{bmatrix} u & \rho & 0 & 0 \\ 0 & u & 1/\rho & 0 \\ 0 & \rho a^2 & u & 0 \\ 0 & 0 & 0 & u \end{bmatrix}$$
 (3.1.12)

The derivation of the non-conservative reaction progress is a simple exercise. Observe that the conservative form of this equation is written as

$$\frac{\partial(\rho\lambda)}{\partial t} + \frac{\partial(\rho\lambda)}{\partial x} = \rho r \tag{3.1.13}$$

We may expand (3.1.13) as follows.

$$\lambda \left(\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} \right) + \rho \frac{\partial \lambda}{\partial t} + \rho u \frac{\partial \lambda}{\partial x} = \rho r$$
 (3.1.14)

The first term in (3.1.14) vanishes since it is just a scalar multiple of the continuity equation (component one of 2.1.1), so we obtain

$$\frac{\partial \lambda}{\partial t} + u \frac{\partial \lambda}{\partial x} = r \tag{3.1.15}$$

as the non-conservative reaction progress equation.

3.2 Eigenvalues

The eigenvalues of the flux Jacobian matrix contain important information on the physics of our detonation problem. We think of any fluid mechanics problem (as well as most solid mechanics problems) in terms of interacting waves. The detonation problem can be decomposed into a set of characteristic waves. The speeds at which these waves propagate are given by the eigenvalues of the flux Jacobian matrix. For any square matrix A, the eigenvalues are defined as the set of numbers ζ such that

$$|A - \zeta I| = 0 \tag{3.2.1}$$

where I is the identity matrix. We may note that the conservative matrix (3.1.7) is heavily populated, so it is very difficult to obtain the eigenvalues by using (3.2.1). Fortunately, the non-conservative matrix (3.1.12) is a simpler form mathematically equivalent to (3.1.7), so these matrices must have the same eigenvalues. Using (2.3.1), the eigenvalues of (3.1.12) are easily shown to be

$$\zeta \in \{u - a, u, u, u + a\} \tag{3.2.2}$$

Note that u is an eigenvalue of multiplicity two, so there are two waves with speed u, i.e., the entropy and reaction progress waves both propagating at the flow velocity. The remaining two distinct eigenvalues $\zeta = u \pm a$ denote acoustic waves. The dynamics of the detonation process may be described through the interactions of characteristic waves, but to completely describe these waves, we must determine the eigenvectors for the detonation problem.

3.3 Eigenvectors

In order to determine the characteristic waves for (2.1.1), we must determine the eigenvectors for the conservative Jacobian matrix (3.1.7). When we use the term eigenvector, in this case, we are referring to a *right eigenvector*.¹⁰

<u>Definition</u>: Given a matrix $A \in \mathbb{C}(n \times n)$ with a set of eigenvalues $\zeta_i \in \mathbb{C}$, i = 1,...,n, we define the right eigenvector $\mathbf{r}_i \in \mathbb{C}(n)$ associated to the eigenvalue ζ_i such that

$$A \mathbf{r}_i = \zeta_i \mathbf{r}_i \tag{3.3.1}$$

Equation (3.3.1) is useful in that it tells us how to find right eigenvectors. To find a right eigenvector for (3.1.7) associated to an eigenvalue ζ , we first define the components of right eigenvector \mathbf{r} . Let

$$\mathbf{r} = (\upsilon_1, \upsilon_2, \upsilon_3, \upsilon_4)^T \tag{3.3.2}$$

Now we apply (3.1.7) and (3.3.1) to create a linear system of equations in the components of \mathbf{r} .

$$\begin{vmatrix}
0 & 1 & 0 & 0 \\
a^{2} - u^{2} - \beta & u \left(2 - \frac{P_{e}}{\rho}\right) & \frac{P_{e}}{\rho} & \frac{P_{\lambda}}{\rho} \\
u(a^{2} - H - \beta) & H - \frac{u^{2}}{\rho} P_{e} & u \left(1 + \frac{P_{e}}{\rho}\right) & \frac{u}{\rho} P_{\lambda} \\
-u \lambda & \lambda & 0 & u
\end{vmatrix} \begin{bmatrix}
\upsilon_{1} \\
\upsilon_{2} \\
\upsilon_{3} \\
\upsilon_{4}\end{bmatrix} = \zeta \begin{bmatrix}
\upsilon_{1} \\
\upsilon_{2} \\
\upsilon_{3} \\
\upsilon_{4}\end{bmatrix}$$
(3.3.3)

The system (3.3.3) directly leads to a system of four eigenvector equations. The eigenvector equations do not have a unique solution; in fact, they have an infinite number of solutions, so care is required in structuring prospective choices for the components of \mathbf{r} to design a proper numerical treatment for the problem. Also, it is important to observe that the number of linearly independent eigenvectors must be same as the order of the system. For this detonation problem, the Jacobian matrix is of the fourth order, so we must determine four linearly independent eigenvectors even though we have only three distinct eigenvalues; the eigenvalue u is repeated.

We begin the process of determining some specific eigenvector components by extracting the first eigenvector equation from (3.3.3), i.e.,

$$v_2 = \zeta v_1 \tag{3.3.4}$$

We may satisfy equation (3.3.4) by choosing

$$v_1 = 1; \ v_2 = \zeta$$
 (3.3.5)

Equation (3.3.5) may be used in (3.3.3) to produce the remaining three eigenvector equations

$$a^{2} - u^{2} - \beta + \left(2u - \zeta - \frac{u}{\rho}P_{e}\right)\zeta + \frac{P_{e}}{\rho}\upsilon_{3} + \frac{P_{\lambda}}{\rho} = 0$$
 (3.3.6)

$$u(a^{2} - H - \beta) + \zeta \left(H - \frac{u^{2}}{\rho}\right) + \left(i - \zeta + \frac{u}{\rho}P_{e}\right)\upsilon_{3} + \frac{u}{\rho}P_{\lambda}\upsilon_{4} = 0$$
 (3.3.7)

$$-u\lambda + \zeta\lambda + (u - \zeta)\upsilon_4 = 0 \tag{3.3.8}$$

Based upon (3.3.5), we may produce the eigenvector associated to eigenvalue $\zeta = u$. Set $\zeta = u$ in (3.3.8), and we see that this equation is trivially satisfied with no restrictions on v_4 . Now we set $\zeta = u$ in (3.3.7) and (3.3.8); by simplifying, we can show that both of these equations reduce to the same equation, i.e.,

$$a^{2} - \beta - \frac{u^{2}}{\rho} P_{e} + \frac{P_{e}}{\rho} \upsilon_{3} + \frac{P_{\lambda}}{\rho} \upsilon_{4} = 0$$
 (3.3.9)

Since there are no restrictions on v_4 , we may freely choose v_4 and solve for v_3 .

$$v_3 = H - \frac{\rho a^3}{P_e} + \frac{P_{\lambda}}{P_e} (\lambda - v_4). \tag{3.3.10}$$

By cleverly choosing the value of v_4 , we produce two linearly independent eigenvectors associated to the eigenvalue $\zeta = u$. If we set $v_4 = 0$, we obtain the eigenvector

$$\mathbf{r} = \left(1, u, H - \frac{\rho a^2}{P_e} + \frac{P_e}{P_\lambda} \lambda, 0\right)^T$$
 (3.3.11)

Alternatively, we obtain a second eigenvector by setting $v_4 = 1$, so

$$\mathbf{r} = \left(1, u, H - \frac{\rho a^2}{P_e} + \frac{P_e}{P_{\lambda}} (\lambda - 1), 1\right)^T$$
 (3.3.12)

We may also obtain the eigenvector associated to eigenvalue $\zeta = u + a$; by returning to equation (3.3.4), let us choose

$$v_1 = 1; v_2 = u + a$$
 (3.3.13)

By substituting (3.3.13) into (3.3.8), we may show that

$$\nu_{A} = \lambda \tag{3.3.14}$$

We can produce another eigenvector equation associated with this eigenvalue by using (3.3.14) and setting $\zeta = u + a$ in (3.3.6). By doing so and solving for v_3 , we have that

$$\upsilon_3 = H + u a \tag{3.3.15}$$

One may show that (3.3.13), (3.3.14) and (3.3.15) satisfy (3.3.7), and the eigenvector associated to eigenvalue $\zeta = u + a$ is

$$\mathbf{r} = (1, u + a, H + u \, a, \lambda)^{T}$$
 (3.3.16)

We may derive the eigenvector associated to eigenvalue $\zeta = u - a$ by the same procedure. We consider (3.3.4) and then set

$$v_1 = 1; \ v_2 = u - a$$
 (3.3.17)

Equation (3.3.8) can be applied to again obtain the result (3.3.14). By substituting (3.3.17) and (3.3.14) into (3.3.6), we can solve for v_3 , i.e.,

$$v_3 = H - ua. (3.3.18)$$

Subsequently, one can show that (3.3.17), (3.3.18) and (3.3.14) satisfy equation (3.3.7). Hence, the eigenvector associated to eigenvalue $\zeta = u - a$, may be written as

$$\mathbf{r} = (1, u - a, H - u a, \lambda)^{T}$$
 (3.3.19)

Equations (3.3.11), (3.3.12), (3.3.18) and (3.3.19) are the eigenvectors for the reactive Euler equations in one dimension. We can form \mathbf{R} , the matrix of right eigenvectors, by allowing each eigenvector to form a column of this matrix. Hence,

$$\mathbf{R} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ u - a & u & u + a \\ H - u a & H - \frac{\rho a^2}{P_e} + \frac{P_{\lambda}}{P_e} \lambda & H - \frac{\rho a^2}{P_e} + \frac{P_{\lambda}}{P_e} (\lambda - 1) & H + u a \\ \lambda & 0 & 1 & \lambda \end{bmatrix}$$
(3.3.20)

It is a straightforward although tedious exercise to show that $|\mathbf{R}|$, the determinant of \mathbf{R} , is

$$\left|\mathbf{R}\right| = -\frac{2\rho a^3}{P_e} \,. \tag{3.3.21}$$

So far, our development of the eigen-structure for the reactive Euler equations closely coincides with Glaister's derivation performed for the real gas equation of state. From (3.3.21), we can see that our eigenvectors are well-defined and constitute a non-singular system for realistic values of density and the speed of sound with $P_e \neq 0$. As a result, \mathbf{R} is invertible under the same conditions, and we can calculate the matrix of left eigenvectors \mathbf{L} with $\mathbf{L} = \mathbf{R}^{-1}$, and by using the adjoint matrix for \mathbf{R} (the transpose of the matrix of cofactors) in conjunction with the definition of the inverse matrix, we have that

$$\mathbf{L} = \frac{1}{|\mathbf{R}|} \begin{bmatrix} a \left(H - u^2 - \frac{\rho a}{P_e} (u + a) + \frac{P_{\lambda}}{P_e} \lambda \right) & a \left(u + \frac{\rho a}{P_e} \right) \\ 2a \left((1 - \lambda)(u^2 - H) - \frac{\lambda}{P_e} (\rho a^2 - P_{\lambda}(\lambda - 1)) \right) & 2u \, a(\lambda - 1) \end{bmatrix}$$

$$2a \, \lambda \left(u^2 - H + \frac{1}{P_e} (\rho a^2 - \lambda P_{\lambda}) \right) - 2u \, a \, \lambda$$

$$a \left(H - u^2 + \frac{\rho a}{P_e} (u - a) + \frac{P_{\lambda}}{P_e} \lambda \right) \qquad a \left(u - \frac{\rho a}{P_e} \right)$$

$$-a \qquad -a \frac{P_{\lambda}}{P_e}$$

$$2a(1 - \lambda) \quad 2a \left(\frac{\rho a^2}{P_e} - \frac{P_{\lambda}}{P_e} (\lambda - 1) \right)$$

$$2a \, \lambda \qquad 2a \left(-\frac{\rho a^2}{P_e} + \frac{P_{\lambda}}{P_e} \lambda \right)$$

$$-a \qquad -a \frac{P_{\lambda}}{P_e}$$

$$(3.3.22)$$

Each row of the matrix shown in (3.3.22) is a left eigenvector for the Jacobian matrix found in (3.1.7).

Although we have not yet presented explicit forms for the pressure derivatives, we have accomplished a great deal of work in this section. Equations (3.2.2), (3.3.20) and (3.3.22) offer a complete description of the structure of the eigen-space associated with the flux Jacobian matrix **A** shown in 3.1.7. Moreover, we can formulate a special similarity transformation, i.e.,

$$\mathbf{A} = \mathbf{R} \mathbf{\Lambda} \mathbf{L} \tag{3.3.23}$$

or

$$\mathbf{\Lambda} = \mathbf{L} \, \mathbf{A} \, \mathbf{R} \tag{3.3.24}$$

and

$$\mathbf{\Lambda} = \begin{bmatrix} u - a & 0 & 0 & 0 \\ 0 & u & 0 & 0 \\ 0 & 0 & u & 0 \\ 0 & 0 & 0 & u + a \end{bmatrix}$$
 (3.3.25)

is the diagonal matrix of eigenvalues. In Recall that matrix \mathbf{L} is the inverse of \mathbf{R} . Our discussion of the numerical physics behind Roe's scheme for the reactive Euler equations is now complete. The Roe formulation is quite important from the theoretical standpoint, but this method is difficult to implement for two or more non-Cartesian space dimensions. Fortunately, other flux-based discretization methods such as the Harten, Lax and van Leer (HLL) family of schemes can easily be applied to this problem. Moreover, these methods do not require the calculation of pressure derivatives (yet to be discussed) for the mixture equation of state. This fact affords greater of ease of calculation for a production numerical scheme.

4 BUILDING THE NUMERICAL SCHEME

In this section, we pull together all of the aspects of detonation physics and mathematics discussed in preceding sections and dedicate our efforts to the solution of our benchmark problem – simulating the detonation of a finite sphere of HMX. In order to accomplish this goal, we begin by presenting detailed pressure derivatives for our mixture equation of state. Then we discuss the details associated with our chosen numerical integration scheme including formulation of the numerical flux vector.

4.1 Pressure Derivatives

The purpose of this subsection is to document formulas for the pressure derivatives (3.1.2) of the mixture equations of state. These derivatives must be computed under the support defined by the set of primitive variables. In this work, we consider two mixture equations of state. The first mixture EOS, called the Hayes-I/JWL EOS is given by substituting (2.3.1) and (2.4.1) into (2.2.5). The second mixture EOS, referred to as the Hayes-II/JWL EOS, is created by substituting (2.3.5) and (2.4.1) into (2.2.5). Either mixture EOS consists of a lengthy formula, so to promote brevity in documentation, we can relate the two mixtures equations of state to one another. If we look carefully at the Hayes-I and Hayes-II formulas, (2.3.1) and (2.3.5), respectively, we see that

$$e_s^{II} = e_s^{I} - \frac{H_1}{gN} \left\{ \left(\frac{\rho}{\rho_0} \right)^N - 1 \right\}$$
 (4.1.1)

These expressions for the internal energy of the solid explosive differ by only one term. The Hayes-I/JWL mixture EOS may be written as

$$e_M^I = (1 - \lambda) e_s^I + \lambda e_a \tag{4.1.2}$$

Hence, by using (4.1.1), we may write the Hayes-II/JWL mixture EOS as

$$e_{M}^{II} = (1 - \lambda) e_{s}^{I} - \frac{H_{1}(1 - \lambda)}{gN} \left\{ \left(\frac{(1 - \lambda) \rho}{\rho_{0}} \right)^{N} - 1 \right\} + \lambda e_{g}$$
 (4.1.3)

where we have used (2.2.3). A general formula for the Hayes- K /JWL mixture EOS may be written as

$$e_{M}^{K} = (1 - \lambda) e_{s}^{I} - \delta_{II}^{K} \frac{H_{1}(1 - \lambda)}{gN} \left\{ \left(\frac{(1 - \lambda) \rho}{\rho_{0}} \right)^{N} - 1 \right\} + \lambda e_{g}$$
 (4.1.4)

Accordingly, equations (2.3.1) through (2.3.4) may be used to expand (4.1.4) and obtain

$$e_{M}^{K} = PD - \beta \left(1 - \lambda - \frac{\rho_{0}}{\rho}\right) + t_{4} \left(1 - \lambda\right)^{N} \left(\frac{\rho}{\rho_{0}}\right)^{N-1} - t_{5} \left(1 - \lambda\right)$$

$$-A \left(\frac{1}{\omega \rho} - \frac{\lambda}{\hat{R}_{1}}\right) \exp\left(-\frac{\hat{R}_{1}}{\lambda \rho}\right) - B \left(\frac{1}{\omega \rho} - \frac{\lambda}{\hat{R}_{2}}\right) \exp\left(-\frac{\hat{R}_{2}}{\lambda \rho}\right) - (Q + e_{0})\lambda \qquad (4.1.5)$$

$$-\delta_{II}^{K} \frac{H_{1}(1 - \lambda)}{gN} \left\{ \left(\frac{(1 - \lambda)\rho}{\rho_{0}}\right)^{N} - 1 \right\}$$

where

$$D = \frac{1 - \lambda}{g} + \frac{1}{\omega \rho} \tag{4.1.6}$$

$$\theta = t_3 - \frac{P_0}{\rho_0} \tag{4.1.7}$$

$$\beta = \theta + (N - 1)t_{\Delta} \tag{4.1.8}$$

$$t_5 = t_4 + \frac{P_0}{g} \tag{4.1.9}$$

Equation (4.1.5) may be solved for pressure, i.e.,

$$P = \frac{1}{D} \left[e_{M}^{K} + \beta \left(1 - \lambda - \frac{\rho_{0}}{\rho} \right) - t_{4} (1 - \lambda)^{N} \left(\frac{\rho}{\rho_{0}} \right)^{N-1} + t_{5} (1 - \lambda) \right]$$

$$+ A \left(\frac{1}{\omega \rho} - \frac{\lambda}{\hat{R}_{1}} \right) \exp \left(-\frac{\hat{R}_{1}}{\lambda \rho} \right) + B \left(\frac{1}{\omega \rho} - \frac{\lambda}{\hat{R}_{2}} \right) \exp \left(-\frac{\hat{R}_{2}}{\lambda \rho} \right) + (Q + e_{0}) \lambda \quad (4.1.10)$$

$$+ \delta_{II}^{K} \frac{H_{1}}{gN} \left\{ (1 - \lambda)^{N+1} \left(\frac{\rho}{\rho_{0}} \right)^{N} - (1 - \lambda) \right\} \right]$$

Although (4.1.10) is complicated, it is in a convenient form for differentiation through the use of the quotient rule. We also note that (4.1.10) consists of a sum of eight terms, i.e.,

$$P = \frac{1}{D} \sum_{i=1}^{8} c_i \, \eta_i \,, \tag{4.1.11}$$

so we may use linearity and differentiate each term individually. If we designate a non-conservative variable of differentiation as q, $q \in \{\rho, \lambda, e\}$, then we have that

$$\frac{\partial P}{\partial q} = \frac{1}{D^2} \sum_{i=1}^{8} c_i \left(D \frac{\partial \eta_i}{\partial q} - \eta_i \frac{\partial D}{\partial q} \right). \tag{4.1.12}$$

Equation (4.1.12) presents a very convenient method for evaluating pressure derivatives. Below, we list explicit equations required in evaluating (4.1.12).

$$\eta_1 = e_M^K; \quad c_1 = 1; \quad \frac{\partial \eta_1}{\partial \rho} = 0; \quad \frac{\partial \eta_1}{\partial \lambda} = 0; \quad \frac{\partial \eta_1}{\partial e} = 1$$
(4.1.13)

$$\eta_2 = 1 - \lambda - \frac{\rho}{\rho_0}; \quad c_2 = \beta; \quad \frac{\partial \eta_2}{\partial \rho} = \frac{\rho_0}{\rho^2}; \quad \frac{\partial \eta_2}{\partial \lambda} = -1; \quad \frac{\partial \eta_2}{\partial e} = 0$$
(4.1.14)

$$\eta_{3} = (1 - \lambda)^{N} \left(\frac{\rho}{\rho_{0}}\right)^{N-1}; \quad c_{3} = -t_{4}; \quad \frac{\partial \eta_{3}}{\partial \rho} = \frac{N - 1}{\rho_{0}} (1 - \lambda)^{N} \left(\frac{\rho}{\rho_{0}}\right)^{N-2}$$

$$\frac{\partial \eta_{3}}{\partial \lambda} = -N(1 - \lambda)^{N-1} \left(\frac{\rho}{\rho_{0}}\right)^{N-1}; \quad \frac{\partial \eta_{3}}{\partial e} = 0$$

$$(4.1.15)$$

$$\eta_4 = 1 - \lambda; \quad c_4 = t_4; \quad \frac{\partial \eta_4}{\partial \rho} = 0; \quad \frac{\partial \eta_4}{\partial \lambda} = -1; \quad \frac{\partial \eta_4}{\partial e} = 0$$
(4.1.16)

$$\eta_{5} = \left(\frac{1}{\omega \rho} - \frac{\lambda}{\hat{R}_{1}}\right) \exp\left(-\frac{\hat{R}_{1}}{\lambda \rho}\right); \quad c_{5} = A; \quad \frac{\partial \eta_{5}}{\partial e} = 0$$

$$\frac{\partial \eta_{5}}{\partial \rho} = \frac{1}{\rho^{2}} \left(\frac{\hat{R}_{1}}{\lambda \omega \rho} - \frac{1}{\omega} - 1\right) \exp\left(-\frac{\hat{R}_{1}}{\lambda \rho}\right)$$

$$\frac{\partial \eta_{5}}{\partial \lambda} = \left(\frac{\hat{R}_{1}}{\omega (\lambda \rho)^{2}} - \frac{1}{\rho \lambda} - \frac{1}{\hat{R}_{1}}\right) \exp\left(-\frac{\hat{R}_{1}}{\lambda \rho}\right)$$
(4.1.17)

$$\eta_{6} = \left(\frac{1}{\omega\rho} - \frac{\lambda}{\hat{R}_{2}}\right) \exp\left(-\frac{\hat{R}_{2}}{\lambda\rho}\right); \quad c_{6} = B; \quad \frac{\partial\eta_{6}}{\partial e} = 0$$

$$\frac{\partial\eta_{6}}{\partial\rho} = \frac{1}{\rho^{2}} \left(\frac{\hat{R}_{2}}{\lambda\omega\rho} - \frac{1}{\omega} - 1\right) \exp\left(-\frac{\hat{R}_{2}}{\lambda\rho}\right)$$

$$\frac{\partial\eta_{6}}{\partial\lambda} = \left(\frac{\hat{R}_{2}}{\omega(\lambda\rho)^{2}} - \frac{1}{\rho\lambda} - \frac{1}{\hat{R}_{2}}\right) \exp\left(-\frac{\hat{R}_{2}}{\lambda\rho}\right)$$
(4.1.18)

$$\eta_{7} = \lambda; \quad c_{7} = Q + e_{0}; \quad \frac{\partial \eta_{7}}{\partial \rho} = 0; \quad \frac{\partial \eta_{7}}{\partial \lambda} = 1; \quad \frac{\partial \eta_{7}}{\partial e} = 0.$$
(4.1.19)

$$\eta_{8} = (1 - \lambda)^{N+1} \left(\frac{\rho}{\rho_{0}}\right)^{N} + \lambda - 1; \quad c_{8} = \frac{H_{1}}{gN}; \quad \frac{\partial \eta_{8}}{\partial \rho} = \frac{N}{\rho_{0}} (1 - \lambda)^{N+1} \left(\frac{\rho}{\rho_{0}}\right)^{N-1}$$

$$\frac{\partial \eta_{8}}{\partial \lambda} = 1 - (N+1) \left(\frac{\rho(1-\lambda)}{\rho_{0}}\right)^{N}; \quad \frac{\partial \eta_{8}}{\partial e} = 0$$

$$(4.1.20)$$

We also have that

$$\frac{\partial D}{\partial \rho} = -\frac{1}{\rho^2 \omega}; \quad \frac{\partial D}{\partial \lambda} = -\frac{1}{g}; \quad \frac{\partial D}{\partial e} = 0 \tag{4.1.21}$$

Clearly, we may use (4.1.12) through (4.1.21) to evaluate the pressure derivatives required by the eigen-space decomposition discussed in Section 3.

4.2 Finite Volume Discretization

Ultimately, we must discretize the governing equations (2.1.1) in order to numerically solve the detonation problem. We may illustrate the discretization procedure by considering a simplified form of (2.1.1), i.e.,

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{S} \tag{4.2.1}$$

where S is a vector containing all of the source terms. To enact the finite volume discretization, we integrate (4.2.1) in 1-D space as follows

$$\int_{x_{i+1/2}}^{x_{i+1/2}} \frac{\partial \mathbf{U}}{\partial t} dx + \int_{x_{i+1/2}}^{x_{i+1/2}} \frac{\partial \mathbf{F}}{\partial x} dx = \int_{x_{i+1/2}}^{x_{i+1/2}} \mathbf{S} dx$$
 (4.2.2)

Moreover, we obtain

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \frac{\partial \mathbf{U}}{\partial t} dx + \mathbf{F} \Big|_{x_{i-1/2}}^{x_{i+1/2}} = \int_{x_{i-1/2}}^{x_{i+1/2}} \mathbf{S} dx$$
 (4.2.3)

Since the limits are fixed in the first term of (4.2.3) and since we assume that **U** is continuous on the interval $(x_{i-1/2}, x_{i+1/2})$, we may interchange the order of integration and differentiation to find that

$$\frac{\partial}{\partial t} \int_{x_{i-1/2}}^{x_{i+1/2}} \mathbf{U} \, dx + \mathbf{F} \Big|_{x_{i-1/2}}^{x_{i+1/2}} = \int_{x_{i-1/2}}^{x_{i+1/2}} \mathbf{S} \, dx \tag{4.2.4}$$

By observing that the integral in the first term is taken over space, we may evaluate it as

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \mathbf{U} \, dx = \widetilde{\mathbf{U}}_i \left(x_{i+1/2} - x_{i-1/2} \right) \tag{4.2.5}$$

where $\widetilde{\mathbf{U}}_i$ is the average of $\mathbf{U} = \mathbf{U}(x,t)$ taken over space in the interval $[x_{i+1/2}, x_{i-1/2}]$. This interval defines cell i in the finite volume grid. Because of the integration, observe that $\widetilde{\mathbf{U}}_i = \widetilde{\mathbf{U}}_i(x)$. If we also apply this idea to the source term, (4.2.4) becomes

$$\frac{d\widetilde{\mathbf{U}}_{i}}{dt}(x_{i+1/2} - x_{i-1/2}) + \mathbf{F}\Big|_{x_{i-1/2}}^{x_{i+1/2}} = \widetilde{\mathbf{S}}_{i}(x_{i+1/2} - x_{i-1/2})$$
(4.2.6)

the so-called semi-discrete form. Hence,

$$\frac{d\widetilde{\mathbf{U}}_{i}}{dt} + \frac{1}{x_{i+1/2} - x_{i-1/2}} (\mathbf{F}_{i+1/2} - \mathbf{F}_{i-1/2}) = \widetilde{\mathbf{S}}_{i}$$
(4.2.7)

The values of \mathbf{F} used in (4.2.7) are evaluated at cell interfaces (natural locations for possible discontinuities in Euler solutions). As a result, at each interface, \mathbf{F} is evaluated as a numerical flux through the use of an upwind discretization scheme based on the values of $\widetilde{\mathbf{U}}_i$ defined at the cell centers. The upwind scheme, described later in Subsection 4.4, makes use of the theory developed in Section 3.

4.3 Temporal Discretization

The semi-discrete form (4.2.7) offers certain numerical advantages (or disadvantages, depending on your point of view). This form effectively decouples the temporal discretization scheme from the spatial discretization. As a result, we are free to choose different methods for each discretization. On the other hand, one may argue that it is unwise to decouple the time and space schemes. Why? Our shock-capturing scheme fundamentally relies on solutions of the Riemann problem and on characteristics. Characteristics adjoin the time and space coordinates in an inextricable manner, so in the strictest sense, these coordinates cannot be decoupled. This effect has led to the creation of a large family of schemes based upon Godunov's method that couple the time and space discretization. Although we do not disagree with these ideas, our development is evolutionary, so it is very important that we understand our space scheme at a fundamental level. For these reasons, we will use the decoupled approach involving what is perhaps the simplest, explicit temporal discretization method. Let us recall (4.2.7) and discretize the time derivative with a simple forward difference. The current time level is indicated by the superscript n.

$$\frac{\widetilde{\mathbf{U}}_{i}^{n+1} - \widetilde{\mathbf{U}}_{i}^{n}}{\Delta t} + \frac{1}{\Delta x} (\mathbf{F}_{i+1/2}^{n} - \mathbf{F}_{i-1/2}^{n}) = \widetilde{\mathbf{S}}_{i}^{n}$$
(4.3.1)

where $\Delta t = t^{n+1} - t^n$ is the numerical time-step, and $\Delta x_i = x_{i+1/2} - x_{i-1/2}$ is the spatial stepsize. Note that (4.3.1) represents a fully explicit method; by rearranging, we obtain

$$\widetilde{\mathbf{U}}_{i}^{n+1} = \widetilde{\mathbf{U}}_{i}^{n} + \Delta t \left[\widetilde{\mathbf{S}}_{i}^{n} - \frac{\mathbf{F}_{i+1/2}^{n} - \mathbf{F}_{i-1/2}^{n}}{\Delta x} \right]$$
(4.3.2)

Basically, equation (4.3.2) implements the Euler time integration method. ¹⁴ The only numerical stability control we place on (4.3.2) involves a restriction on the time-step Δt . This restriction is enforced through a Courant-Friedrichs-Lewy (CFL) criterion. We apply a factor of 0.5 to the new predicted time-step given by

$$\Delta t^{pred} = \min_{1 < i < i \max} \left(\frac{\Delta x_i}{|u_i| + |a_i|} \right) \tag{4.3.3}$$

4.4 The Numerical Flux

As we mentioned earlier, the flux vector **F** defined at each interface must be evaluated via an upwind method in order to facilitate the automatic capturing of shock waves without numerical oscillations. Our upwind method of choice is Roe's flux difference splitting scheme.¹² To promote notational clarity, let us designate the numerical flux vector by the symbol **f** while retaining the symbol **F** for the regular flux vector (2.1.3) defined by the reactive Euler equations. Roe's numerical flux vector is simply stated below.¹¹

$$\mathbf{f} = \frac{1}{2} (\mathbf{F}_L + \mathbf{F}_R - |\widetilde{\mathbf{A}}| (\mathbf{U}_R - \mathbf{U}_L))$$
 (4.3.4)

where $\widetilde{\mathbf{A}}$ is the flux Jacobian matrix defined by (3.3.23) and evaluated at the interface in

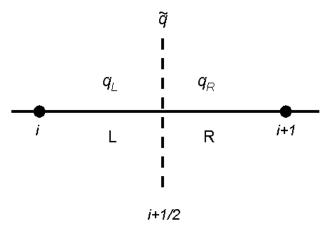


Figure 1. Interface Notation

question. The (\sim) notation indicates that this evaluation is conducted with the use of Roeaveraged variables. The designations L and R are best explained by referring to Figure 1. The subscript L or R designates that the quantity is defined just to left or right of the

interface, respectively. In Figure 1, the interface is located at $x_{i+1/2}$ between cell i and cell i+1. Why would the left and right interface values of some property differ? The answer is very simple. Remember that we stated earlier that our method involves solutions of the Riemann problem. These solutions admit discontinuities, e.g., shock waves. Hence, by the nature of a discontinuity, the properties taken to the left and the right of an interface differ. In the simplest view, we can say that the properties to the left of the interface taken on the values defined in cell i; it follows that the properties to the right of the interface take on the values defined in cell i+1. This means of selecting the left and right interface values renders first-order accuracy on uniform meshes. There are other ways to define these *upwind* values. A higher order method is discussed in a later subsection. Our Roe averages are computed from these upwind (L and R) variables.

The Roe average constitutes the physically correct representation of an average at a discontinuity conforming to the basic ideas of flux difference splitting. ¹⁵ A mathematically lengthy derivation is required to produce Roe's formulas, so we merely state the results. ¹⁰

$$\widetilde{\rho} = \sqrt{\rho_L \, \rho_R} \tag{4.3.5}$$

$$\widetilde{u} = \frac{u_L \sqrt{\rho_L} + u_R \sqrt{\rho_R}}{\sqrt{\rho_L} + \sqrt{\rho_R}}$$
(4.3.6)

$$\widetilde{H} = \frac{H_L \sqrt{\rho_L} + H_R \sqrt{\rho_R}}{\sqrt{\rho_L} + \sqrt{\rho_R}}$$
(4.3.7)

$$\widetilde{e} = \frac{e_L \sqrt{\rho_L} + e_R \sqrt{\rho_R}}{\sqrt{\rho_L} + \sqrt{\rho_R}}$$
(4.3.8)

$$\widetilde{\lambda} = \frac{\lambda_L \sqrt{\rho_L} + \lambda_R \sqrt{\rho_R}}{\sqrt{\rho_L} + \sqrt{\rho_R}}$$
(4.3.9)

$$\widetilde{P} = \widetilde{\rho} \left(\widetilde{H} - \widetilde{e} - \frac{1}{2} \widetilde{u}^2 \right) \tag{4.3.10}$$

$$\widetilde{a}^2 = \widetilde{P}_{\rho} + \frac{\widetilde{P}\,\widetilde{P}_{e}}{\widetilde{\rho}^2} \tag{4.3.11}$$

One may note that (3.3.20) through (3.3.22), (3.3.25) and (4.3.11) require Roe-averaged pressure derivatives. Recall that explicit formulas for these derivatives are presented in (4.1.12) through (4.1.20). The derivatives are presented in terms of the primitive variables, so we claim that Roe-averaged values of the pressure derivatives may be

obtained by simply evaluating these formulas for the Roe-averaged variables presented in (4.3.5) through (4.3.10). In practice, this procedure seems to work well.

We may now address the practical evaluation of the numerical flux vector as it is defined in (4.3.4). The vectors \mathbf{F}_L and \mathbf{F}_R are the standard Euler flux vectors (2.1.3) evaluated for the upwind conservative variables \mathbf{U}_L and \mathbf{U}_R (or primitive variables \mathbf{q}_R and \mathbf{q}_L), respectively. The remaining term

$$\left|\widetilde{\mathbf{A}}\right|(\mathbf{U}_R - \mathbf{U}_L) \tag{4.3.12}$$

is denoted as the numerical viscosity expression. The difference between the conservative variables left and right of the interface may be easily evaluated through the use of (2.1.2). $|\widetilde{\mathbf{A}}|$ may be evaluated as follows.

$$\left|\widetilde{\mathbf{A}}\right| = \widetilde{\mathbf{R}}\left|\widetilde{\mathbf{A}}\right|\widetilde{\mathbf{L}} \tag{4.3.13}$$

where the (\sim) notation indicates that all of the entries in the matrices are calculated with the use of averaged variables. The matrix $\left|\widetilde{\Lambda}\right|$ is created by taking the absolute value of each element of $\widetilde{\Lambda}$, the diagonal matrix of eigenvalues. Finally, (4.3.12) is computed by a series of simple matrix-matrix and matrix-vector multiplications; (4.3.4) is easily evaluated by using vectors sums.

4.5 A Higher-Order Scheme

The scheme described in the preceding subsection is only accurate to the first order, and it is highly dissipative, a detriment to the sharp resolution of detonation waves. In this subsection, we briefly describe an enhancement to the first order scheme that is third-order accurate on uniform grids. As you may have concluded, the left and right interface values are constructed from the cell-center values to the left and right of the interface, respectively. To increase the order of accuracy for the scheme, we instead *reconstruct* the interface values using interpolating polynomials involving more than one cell-center value. One way to apply this idea is through the use of a Monotone Upwind Scheme for Conservation Laws (MUSCL). The equations for the left and right interface variables are provided below for the interface located at i-1/2. Consider the primitive variable q, $q \in \{\rho, u, P, \lambda\}$.

$$q_{L} = q_{i-1} + \frac{1}{4} \left[(1 - \kappa) \Phi(r_{L}) (q_{i-1} - q_{i-2}) + (1 + \kappa) \Phi\left(\frac{1}{r_{L}}\right) (q_{i} - q_{i-1}) \right]$$
(4.4.1)

where $\kappa = 1/3$ to achieve third-order accuracy, and

$$r_L = \frac{q_i - q_{i-1}}{q_{i-1} - q_{i-2}}. (4.4.2)$$

 Φ is a function designed to serve as a non-limiter limiter. In every case, our interpolated data must be monotone; otherwise, the interpolation procedure will result in the formation of non-physical oscillations in the numerical solution. ¹² The nonlinear limiter is designed to maintain the monotonicity of smooth sections of data when interpolated to high order. We have chosen the Van Albada limiter for use in this problem, i.e.,

$$\Phi(r) = \frac{r^2 + r}{1 + r^2} \tag{4.4.3}$$

The right interface variable is given by

$$q_{R} = q_{i} - \frac{1}{4} \left| (1 - \kappa) \Phi(r_{R}) (q_{i+1} - q_{i}) + (1 + \kappa) \Phi\left(\frac{1}{r_{R}}\right) (q_{i} - q_{i-1}) \right|$$
(4.4.4)

For this expression, the ratio used by the limiter is defined as

$$r_R = \frac{q_i - q_{i-1}}{q_{i+1} - q_i} \tag{4.4.5}$$

Equations (4.4.1) through (4.4.5) cannot be implemented without due cognizance. The left interpolant involves cell-center values located at i-2, i-1 and i. As a result, we must ensure that

$$(q_i - q_{i-1})(q_{i-1} - q_{i-2}) > 0$$
 (4.4.6)

Otherwise, the cell-center data is non-monotone, and the interface values must be set to the first-order values

$$q_L = q_{i-1}$$
 $q_R = q_i$
(4.4.7)

in order to properly smooth the solution. For the right interpolant, we must ensure that

$$(q_i - q_{i-1})(q_{i+1} - q_i) > 0$$
 (4.4.8)

or we must use the first-order interpolation values (4.4.7). In addition, after the criteria (4.4.6) and (4.4.8) are satisfied, we are required to limit on the ratios (4.4.2) and (4.4.5). Based on the data, these ratios may become undefined, so the limiter function (4.4.3) must be modified ensure that its value always remains finite. If this interpolation strategy is used properly, the Roe algorithm becomes a high-resolution flux difference splitting scheme.

4.6 Boundary Conditions

In most cases, we cannot solve partial differential equations without applying boundary conditions. Even for our simple detonation problem cast in one dimension, we must apply boundary conditions at x = 0 (the center of the sphere) and at $x = x_{\text{MAX}}$ (the outer surface of the sphere). At the center of the sphere, we enforce fully reflective boundary conditions through the use of a ghost cell installed at i = 0, i.e.,

$$\rho_0 = \rho_1
u_0 = -u_1
P_0 = P_1
\lambda_0 = \lambda_1
e_0 = e_1$$
(4.5.1)

We have assumed that the first flow field cell adjacent to this boundary has the index i = 1.

At the outer surface of the sphere, we apply extrapolated boundary conditions to mimic a supersonic outflow. We implement this condition by installing a ghost cell at $i = i_{MAX}$. We set conditions in this cell as follows.

$$\rho_{\text{IMAX}} = \rho_{\text{IMAX-1}}
u_{\text{IMAX}} = u_{\text{IMAX-1}}
P_{\text{IMAX}} = P_{\text{IMAX-1}}
\lambda_{\text{IMAX}} = \lambda_{\text{IMAX-1}}
e_{\text{IMAX}} = e_{\text{IMAX-1}}$$
(4.5.2)

Boundary conditions (4.5.1) and (4.5.2) function well for the detonation of a finite spherical mass of HMX.

5 PARTICLE MOTION

In this section, we extend our discussion beyond the application of numerical detonation literature cited thus far. Given the level of interest in Multiphase Blast Explosives (MBX), it is desirable to incorporate solid particles into our detonation programming. This effort is new, so our treatment of solid particles is limited, to a certain extent. Still, our particles have realistic mass and finite radii. They are driven by the detonation through the use of Lagrangian laws of motion. Our particle algorithms have only three major limitations:

- (i) The particle collection exists in the diffuse limit. Particles are assumed not to interact with one another.
- (ii) Particles are assumed to exist as rigid spheres. The do not deform or change phase during the detonation event.
- (iii) This model is restricted to one dimension. We can only establish initial particle positions along a single ray.

Based on these assumptions, we can investigate the efficacy of this model in predicting the post-detonation conditions for a mass of solid HMX loaded with particles.

5.1 Coupling Terms

We may now discuss the coupling terms (source terms) for particles presented in equations (2.1.1) and (2.1.6). \dot{F}_s and \dot{Q}_s have relatively simple descriptions. \dot{F}_s represents the transfer of momentum between the gas phase and the particle phase while \dot{Q}_s represents the similar transfer of thermal energy. For spherical particles, these terms may be written in a simple form. Assume that the total number of particles is N_p .

$$\dot{F}_{s} = -\sum_{p=1}^{N_{p}} \frac{4}{3} \pi \rho_{p} r_{p}^{3} \frac{du_{p}}{dt}$$
 (5.1.1)

$$\dot{Q}_{s} = -\sum_{p=1}^{N_{p}} 4 h_{p} \pi r_{p}^{2} (\widetilde{T} - T_{p})$$
(5.1.2)

where ρ_p , r_p and u_p are the solid density, radius and velocity of the p^{th} particle, respectively. Therefore, du_p/dt is the acceleration of the p^{th} particle. Also, \widetilde{T} is the temperature of the gas phase at the surface of the particle, and T_p is the particle temperature. Actually, \widetilde{T} is the Favre-filtered temperature; this filtering operation is used to take the presence of turbulence into account. Our simulation is non-viscous, so we simply set \widetilde{T} equal to the gas phase temperature T. The parameter h_p is the heat transfer coefficient that governs the transfer of thermal energy at the particle/fluid interface. In

general, h_p is experimentally determined. By specifying (5.1.1) and (5.1.2), we can accurately describe the coupling between the gas and particulate phases. Of course, these equations only apply to particles of fixed mass. Additional terms (including mass conservation) must be specified for particles that react with the gas phase.

5.2 Particle Laws of Motion

The detonation physics algorithms incorporate discrete, finite-mass particles, so we apply Lagrangian equations for tracking the movement of particles. Let x_p designate the radial coordinate of the p^{th} particle. Then we have that

$$\frac{dx_p}{dt} = u_p \tag{5.2.1}$$

The particle velocity u_p must be determined from the evolution equation given by a model. We have two alternatives for this model; the first is called the "Spray Model" which may be described as follows.⁶

$$\frac{du_p}{dt} = \frac{3}{16} \frac{C_D \mu \operatorname{Re}_p}{\rho_p r_p^2} (u - u_p)$$
 (5.2.2)

where the particle Reynolds number Re_p is defined as

$$\operatorname{Re}_{p} = \frac{2r_{p} \rho}{\mu} |u - u_{p}| \tag{5.2.3}$$

The drag coefficient for the particle C_D is conveyed by the "Spray Drag Law", i.e.,

$$C_{D} = \begin{cases} \frac{24}{\text{Re}_{p}} \left(1 + \frac{\text{Re}_{p}^{2/3}}{6} \right) & \text{Re}_{p} < 1000 \\ 0.44 & \text{Re}_{p} > 1000 \end{cases}$$
 (5.2.4)

 ρ , μ and u are the density, dynamic viscosity and velocity of the gas phase in the vicinity of the particle. This model is not appropriate for detonation problems, but it still serves well for testing. For the problem of a detonation with solid inclusions, we apply a high speed gas flow model originally developed for solid rocket motors.

The high speed gas flow model was developed for the multiphase flow field created by the burn of porous, powdered explosive material. ¹⁶ In this case, the particle acceleration is given by

$$\frac{du_p}{dt} = \frac{\pi}{8} \frac{d_p^2 C_D \rho}{m_p} \left| u - u_p \right| (u - u_p).$$
 (5.2.5)

In order to maintain our notation consistent with the literature, (5.2.5) is written in terms of the particle diameter d_p instead of the radius. Also, m_p is the mass of the p^{th} particle. This high speed drag law provides the drag coefficient through a more complicated calculation. First, we calculate a "Mach-zero" drag coefficient, C_{D0} , i.e.,

$$C_{D0} = \begin{cases} C_1 & \alpha_2 < 0.08 \\ \frac{(0.45 - \alpha_2)C_1 + (\alpha_2 - 0.08)C_2}{0.37} & 0.08 < \alpha_2 < 0.45 \\ C_2 & \alpha_2 \ge 0.45 \end{cases}$$

(5.2.6)

where Re_p is calculated by using (5.2.3), and

$$C_1 = \frac{24}{\text{Re}_p} + \frac{4.4}{\sqrt{\text{Re}_p}} + 0.42 \tag{5.2.7}$$

$$C_2 = \frac{4}{3\alpha_1} \left(1.75 + \frac{150\alpha_2}{\alpha_1 \text{ Re}_p} \right). \tag{5.2.8}$$

In (5.2.6) and (5.22.8), we have introduced two new parameters α_1 and α_2 ; they are the volume concentrations of the gas and particle phases, respectively. These parameters require interpretation when considering the detonation problem. At the outset of the problem, the solid explosive has not been detonated, so there is no gas phase at this point. The best course of action is to compute the initial values of α_1 and α_2 based upon the volume of the solid explosive and the volume of particles. Since we are not simulating details of the shock interaction with metal particles, we calculate α_1 and α_2 on this basis of the initial calculation and maintain them fixed for the duration of the detonation. We must then calculate a final value of C_D based on a Mach correction. This correction exists due to the natural variation in the drag coefficient with Mach number. If we do not wish to implement a drag correction, then we set $C_D = C_{D0}$; otherwise the corrected value of C_D may be calculated from

$$C_D = C_{D0} \left(1 + \exp\left(-\frac{0.427}{M^{4.63}}\right) \right),$$
 (5.2.9)

where

$$M = \frac{\left| u - u_p \right|}{a} \,. \tag{5.2.10}$$

By using the particle velocities provided by (5.2.2) though (5.2.4) or (5.2.5) through (5.2.10), we may integrate (5.2.1) to determine the track of each particle through space during the detonation.

6 RESULTS

From the start of this effort, several versions of our current numerical detonation computer code have been developed by the author. The purpose of this section is to present some of the results produced for typical problems. Specifically, we discuss three results. The first set of results is intended to show that our detonation program is functioning properly and producing physically correct solutions. In a second calculation, we address the numerical detonation of a spherical mass of pure HMX. For this problem, we have computed results by using both the Hayes-I and Hayes-II equations of state for the solid explosive combined with the JWL EOS for the detonation products. Finally, we discuss the results for the detonation of a spherical mass of HMX loaded with steel particles.

6.1 Simple Plane Wave Detonation

This test problem, described in Reference 2, is used to show whether or not the flux difference splitting scheme is working properly. In this case, we endeavor to solve a Deflagration to Detonation Transition (DDT) problem in one dimension. Both the explosive and the detonation products are modeled by using the calorically perfect gas EOS. The associated mixture EOS is given as

$$e = \frac{P}{\rho(\gamma - 1)} - Q\lambda \tag{6.1.1}$$

As discussed in Section 4, we apply fully reflective boundary conditions at x = 0 and extrapolation conditions at $x = x_{MAX}$. For this problem, we use the reaction rate expression

$$r = k (1 - \lambda) \exp \left(-\frac{E_a}{P/\rho} \right)$$
 (6.1.2)

where (6.1.2) is in Arrhenius form; k is the reaction rate constant, and E_a is a parameter that behaves like an activation energy. The one-dimensional domain is defined in 0 < x < 12. Also, we have that $E_a = 10$; Q = 50; $\gamma = 1.4$, and k = 7. The problem is initialized with u = 0; P = 0, and $\lambda = 0$ everywhere. The initial density distribution is given by

$$\rho(x) = \frac{1}{1 + 3\exp(-x^2)}, \quad 0 \le x \le 12.$$
 (6.1.3)

This density distribution initiates the reaction in the region near x = 0 by boosting the reaction rate term.

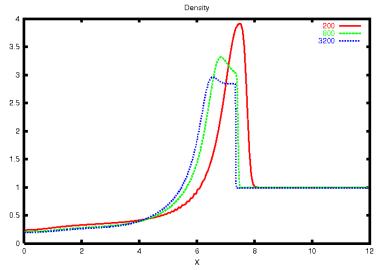


Figure 2. Problem 1 Detonation Field Density, Time = 3.0

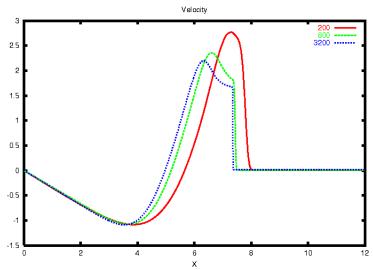


Figure 3. Problem 1 Detonation Field Velocity, Time = 3.0

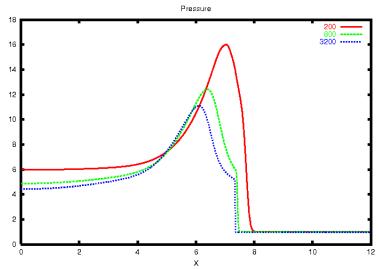


Figure 4. Problem 1 Detonation Field Pressure, Time = 3.0

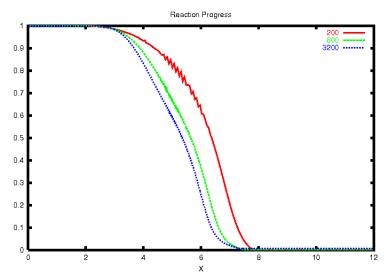


Figure 5. Problem 1 Detonation Field Reaction Progress Variable, Time = 3.0

This problem does not possess an "exact" solution, but Xu et al. have obtained a fully converged numerical solution using a mesh consisting on 3200 cells.² This problem provides an excellent test detonation physics algorithms. Accordingly, we have generated three numerical solutions on grids comprised of 200, 800 and 3200 cells, respectively. The numerical solutions for density, velocity, pressure and the reaction progress variable are provided in Figures 2 through 5, respectively, at the dimensionless time 3.0. In each figure, solution plots are color-coded to correspond to the mesh used. The behavior shown in each plot agrees quite well with archived plots.² We have observed only one anomaly in our solutions. Strangely enough, on the mesh consisting of only 200 cells, there are noticeable oscillations in the reaction progress variable. These oscillations dissipate with increasing mesh density. The explanation for this behavior is not immediately evident. In some of our solutions, the reaction progress variable has been observed to hunt between the solid and gaseous equations of state. In fact, this variable is

very sensitive and couples strongly to the reaction rate. We apply no post-solution filtering to this variable. Secondly, we are using a weak time integration scheme with poor numerical stability performance. The oscillations become less prevalent with increasing grid density, so the space scheme may be compensating for the time scheme. This phenomenon bears further investigation as this work continues. We will also reexamine the nonlinear limiter coding. Nevertheless, our converged solution agrees well with the converged archival solution.²

6.2 Detonation of Pure HMX

This problem is intended to demonstrate our computer code's capability for simulating the detonation of a sphere of pure HMX. This problem permits a test of our discretization of the geometric source term found in the reactive Euler equations (2.1.1) and (2.1.4). It also represents our first attempt at capturing the physics of a realistic detonation event. In this case, we address the detonation of sphere of solid HMX with a radius of 4.5 cm. The radius of the sphere is divided into 800 cells. Figure 6 shows the density, velocity, pressure and reaction progress variables for the numerical solution at three microseconds (µs) detonation elapsed time. As you can see, the Von Neumann spike is clearly resolved in this solution as is the Taylor wave. Moreover, the Chapman-Jouquet pressure is captured at the experimentally obtained value of 42 GPa. Also, the numerical detonation velocity has a value of 1.02 cm/µs which is very close to the experimentally obtained value of 0.911 cm/µs.²¹ Of course, the experimental value is generally taken from tests that mimic plane wave detonation conditions. As a result, we expect to calculate a different value for the spherical detonation problem. Overall, the results agree very closely with the archival data. We have also solved this same problem by using the Hayes-II/JWL mixture EOS. The results of this analysis are given in Figure 7. It is interesting to observe that the Taylor wave is captured in this solution even more smoothly than it was in the preceding case. The more complex Hayes-II EOS may actually offer greater stability when used in the mixture EOS. This numerical solution also offers excellent comparisons with the Chapman-Jouquet pressure and detonation velocity for HMX. Both mixture equations of state show that the detonation reaction occurs in a nearly instantaneous manner. As you can see, the reaction progress variable changes in a nearly discontinuous manner at the detonation front. In either case, our computer programming captures the appropriate physics for the detonation, and it renders a wide array of physical data (far more than is shown here).

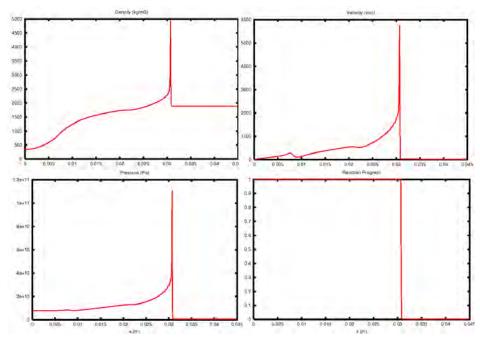


Figure 6. Numerical detonation solution Hayes-I/JWL in HMX at 3 $\mu s.$ Horizontal axis is distance in meters.

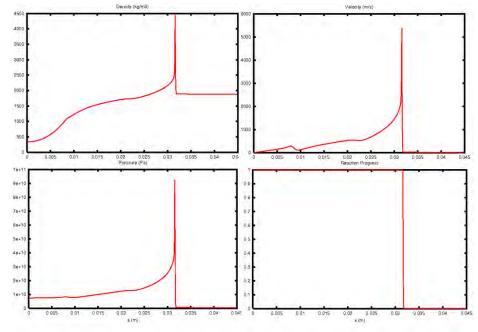


Figure 7. Numerical detonation solution Hayes-I/JWL in HMX at 3 $\mu s.$ Horizontal axis is distance in meters.

6.3 Detonation of HMX Containing Metal Particles

This test case is the final detonation problem addressed by this report. We consider the detonation of a spherical mass of HMX loaded with a radial distribution of steel particles. The mass of the HMX sphere remains the same as is used for the preceding problem, and we still have 800 finite volume cells defined along the charge radius. For this example, we have placed ten particles, at uniform spacing, along the charge radius. The particles each have a radius of 463 µm and a material density of 7860 kg/m³. We assume the gas viscosity has a value of 1.7x10⁻⁵ kg/(m.s). Furthermore, in this simulation study, we have applied the high speed flow drag law. The results for particle locations are presented in Figure 8 while the plot of particle velocities is given in Figure 9. The particle tracks shown in Figure 8 clearly indicate the passage of the detonation wave. For particles farther away from the charge center, the particle tracks show changes in slope at progressively larger times. The sudden change in track slope concurs with the nearly discontinuous change seen in the particle velocity traces shown in Figure 9. Also, in Figure 9, the effect of the drag law can clearly be seen as the particle velocities rise rapidly in the wake of the detonation wave then fall quickly under the action of drag in the region behind the wave. We have also applied the Mach correction to the rocket drag law. In the velocity trace for the particle closest to the charge center, we can see the velocity begin to level off at 4.5 µs. Available data indicates that the calculated terminal velocity at or near 375 m/s is an acceptable value. This simulation does not include thermal effects since we are still in the process of completing our detonation products EOS.

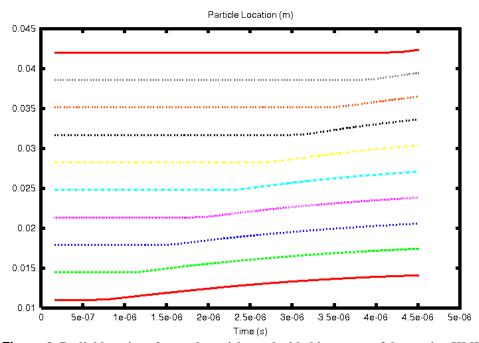


Figure 8. Radial locations for steel particles embedded in a mass of detonating HMX

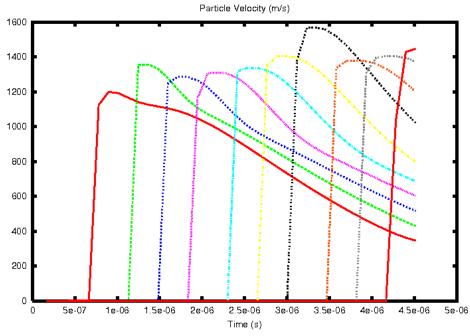


Figure 9. Radial velocities for steel particles embedded in a detonating mass of HMX

7 CONCLUSIONS

In this report, we have presented the governing equations for the direct numerical simulation of the detonation of a solid explosive material. Proper equations of state have been discussed for both the solid explosive material and for the gaseous detonation products. From these equations of state, we have developed a mixture equation of state relating the specific internal energy for the detonation to the thermodynamic pressure. The resulting computer program has been tested on an archival detonation problem for the purpose of comparison. We have presented results for the detonation of a spherical mass of pure HMX.

More importantly, we have incorporated particle tracking algorithms within the programming. As a result, the code can now explosively drive particles under the action of a detonation wave with coupling to a drag law. This mechanism allows the code to simulate the detonation of a Multiphase Blast Explosive in the diffuse limit of particle loading. We have built drag laws for both spray and high speed gas flow drag law into the code. For a test problem, we have simulated the detonation of a mass of HMX loaded with a radial distribution of steel particles. The trend in post-detonation velocities of these particles meet our expectations.

8 RECOMMENDATIONS

During the months ahead, detonation physics algorithms are scheduled for implementation in LESLIE3D. The development of the present work has been a learning experience accompanied by a large number of difficulties, especially in the implementation of Roe's flux difference splitting scheme. A first recommendation is that the HLL family of schemes be used instead. These schemes are more robust and do not require the use of pressure derivatives. Also, these schemes already operate well inside of LESLIE3D. The detonation physics solver will also benefit from the interface tracking scheme already coded into LESLIE3D. Clearly, the governing equation differ at the interface between the condensed explosive and the surrounding gas field. This situation necessitates an interface to maintain code stability.

The detonation physics algorithms discussed here must be adapted for curvilinear coordinates in three dimensions. For HLL flux forms, this process should not be difficult. The author has already done some work in this area. However, the pressure and specific volume (or density) closures associated with the mixture equation of state do require attention. The Gas-Interpolated Stewart-Prasad-Asay (GISPA) method requires these closures to address the multiphase physics of detonation. There is no unique set of closures available for this process, but the chosen closures must be carefull accomplished. Some difficulty has been encountered in the use of the specific volume closure (due to Xu), and this difficulty should be investigated and resolved.

The Hayes equation of state for the solid explosive is an older relationship that characterizes very few explosives. The Mie-Gruneisen equation of state characterizes many more explosive materials. That is to say, there is data available. However, the

mixture equation of state must be rederived for the Mie-Gruneisen formulation. It may be combined with the JWL adiabat for the detonation products, or with another real gas state equation. The "Wide-Ranging" detonation equation of state may also be implemented.⁴

Ultimately, the particle phase algorithms discussed here must be rewritten for dense phase fields. The detonation of a condensed explosive with solid inclusions is a dense phase problem. Also, the computer program is currently not properly written even in the diffuse limit as regards the nonhomogeneous source terms. The integration scheme should be changed to reflect the use of Strang splitting. That is to say, the spatial integration scheme should be advanced in separate step from the nonhomogeneous terms. For the latter step, the integration should be conducted in the temporal manner at each grid cell just like an initial value problem.

REFERENCES

- 1. Strang, G., "On the construction and comparison of difference schemes", *SIAM J. Numer. Anal.*, Vol. 5, No. 3, pp. 506-517, 1968.
- 2. Xu, S., Aslam, T. and Stewart, D.S., "High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries", *Combust. Theory Modeling*, Vol. 1, pp. 113-142, 1997.
- 3. Bdzil, J.B., Stewart, D. S. and Jackson, T.L., "Program burn algorithms based on detonation shock dynamics: Discrete approximations of detonation flows with discontinuous front models", *Journal of Computational Physics*, Vol. 174, No. 2, pp. 870-902, 2001.
- 4. Wescott, B.L., *On Detonation Diffraction in Condensed Phase Explosives*, Doctoral Dissertation, University at Illinois at Urbana-Champaign, 2001.
- 5. Stewart, D.S., "Tools for Design of Advanced Explosive Systems and Other Investigations on Ignition and Transient Detonation", Final Report on a Grant from the U.S. Air Force Research Laboratory Munition Directorate to the University of Illinois, 2005.
- 6. Chen, K.H. and Shuen, J.S., "A Coupled Multi-Block Solution Procedure for Spray Combustion in Complex Geometries", AIAA Paper 93-0108, American Institute for Aeronautics and Astronautics, 31st Aerospace Sciences Meeting and Exhibit, January 1993.
- 7. Stewart, D.S., Electronic Communication, 2006.
- 8. Hayes, D.B., "A Pⁿt Detonation Criterion From Thermal Explosion Theory", Sixth Symposium (International) on Detonation, Pasadena, California, 1976.

- 9. Davis, W.C., "Complete equation of state for unreacted solid explosive", *Combustion and Flame*, Vol. 120, pp. 399-403, 2000.
- 10. Glaister, P., "An approximate linearised Riemann solver for the Euler equations for real gases", *Journal of Computational Physics*, Vol. 74, pp. 382-408, 1988.
- 11. Nance, D.V., "Flux Difference Splitting Algorithms for Real Gas Mixtures", Technical Memorandum, Munitions Directorate, Air Force Research Laboratory, March 2006.
- 12. Hirsch, C., <u>Numerical Computation of Internal and External Flows</u>, Vol. 2, John Wiley & Sons, New York, 1991.
- 13. Collela, P. and Woodward, P.R., "The piece-wise parabolic method for gasdynamical simulations", *Journal of Computational Physics*, Vol. 54, pp. 174-201, 1984.
- 14. Burden, R.L., Faires, J.D. and Reynolds, A.C., <u>Numerical Analysis</u>, 2nd Ed., Prindle, Weber & Schmidt, Boston, 1981.
- 15. Roe, P.L., "Approximate Riemann solvers, parameter vectors and difference schemes", *Journal of Computational Physics*, Vol. 43, p. 357, 1981.
- 16. Akhatov, I.S. and Vainshtein, P.B., "Transition of porous explosive combustion into detonation", *Combustion, Explosion and Shock Waves*, Vol. 20, No.1, pp. 63-70, 1984.
- 17. Carlson, D.J. and Hoglund, R.F., "Particle drag and heat transfer in rocket nozzles", *AIAA Journal*, Vol. 2, No. 11, pp. 1980-1984, 1964.

APPENDIX A SOURCE CODE

Instructions:

The source code that follows has been developed over a period of six years, but in a sporadic manner, as time has permitted. FORTRAN 77 is used throughout the computer program, and an in-line coding structure has been used. The programming is designed for research and is thus rather crude. The initial conditions (shock-based initiation) are all rigidly coded. Different initiation options exist, but they must be enabled or disabled by commenting. The detonation reaction rate laws are treated in the same way. The desired reaction rate law must be commented in for the initial conditions and for the first and second time step segments of the solver. The calorically perfect gas and Jones-Wilkins-Lee test problems are also activated or deactivated by commenting in/out code segments.

This computer program is written for standard explosives like HMX for which we have plenty of data. Especially for the Hayes equation of state, a great deal of data input is required. This data is simply entered directly into the source code. This statement is also true as pertains to the Jones-Wilkins-Lee detonation product data as well as the particle field data. This code functions in one dimension only: Cartesian, cylindrical or spherical. The domain boundaries are contained between x1 and x2. The number of cells in the detonation field is given by imax-1. The variable NSTP tells the code how many iterations (time steps) to execute while the variable NDMP tells the code how many iterations to perform between dump files. The variable IRST controls code execution. With IRST set at zero, the code begins with the coded initial conditions. With IRST set at one, the code reads the restart.data file to obtain its starting conditions. The IEOS variable switches between the mixture equations of state. IEOS equal zero sets calorically perfect gas conditions. IEOS at one sets JWL conditions while IEOS equal 2 or 3 sets the Hayes-I/JWL and Hayes-II/JWL formulations. The reader should be advised that the pure JWL option does not work well. The fault of this equation is that there is not a sufficient energy separation between the adiabats to result in detonation.

This detonation physics program utilizes a number of flags and control parameters in order to stabilize code operation. Some of these parameters set tolerances on the variables (like the reaction progress variable) to prevent "hunting". Other flags control solution progress. For instance, internal energy updates are lagged by one iteration to keep temperature from turning negative. It is also important to observe that the equations of state used here have constant specific heat formulations. Over time, this limitation should be lifted, but better equation of state data is required to do so. We also zero the detonation reaction rate in the far field. As it happens, the flux scheme will erroneously allow reaction rate to creep up slowly in the unreacted explosive mass. This effect is damaging to the solution and had to be corrected.

```
c Monotonicity check implemented on extrapolation
c Direct adaptations for calorically perfect gas and JWL
      program ez1 master
      implicit none
c Parameter statements
      integer imax
      parameter (imax = 20001)
      parameter (imax = 2001)
      integer npar
      parameter (npar = 1000)
      real*8 c12
      parameter (c12 = 0.5d0)
      real*8 c13
      parameter (c13 = 1d0/3d0)
      real*8 c14
      parameter (c14 = 0.25d0)
      real*8 c18
      parameter (c18 = 0.125d0)
      real*8 c23
      parameter (c23 = 2d0/3d0)
      real*8 c43
      parameter (c43 = 4d0/3d0)
      real*8 c316
      parameter (c316 = 3d0/16d0)
      real*8 pi
      parameter (pi = 3.141592654d0)
c Variable array declarations
c File I/O
      character*12 filex
      character*12 parex
c Debug flags
      integer idbg1
      integer idbgf
      integer idbgs
      integer idbgp
c Control flags
      integer irst
      integer ieos
      integer igeo
      integer irxn
      integer ipar
      integer idrg
      integer imach
            Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
integer iext
      integer iav
     integer ilim
     integer imon
      integer iefx
      integer item
c Counters
     integer i
     integer n, nn, np
     integer 1, m
     integer k
     integer nstart
     integer nstp
      integer ndmp
      integer nfil
c Gas phase data
     real*8 pamb
      real*8 mu
c Calorically perfect EOS data
      real*8 gamm
      real*8 gam1
c JWL EOS data
     real*8 r0
      real*8 aj
      real*8 bj
     real*8 cj
     real*8 cjh
     real*8 r1
     real*8 r2
     real*8 wj
     real*8 pcj
c Hayes-I EOS data
     real*8 cvs
     real*8 gh
     real*8 h1
     real*8 nh
     real*8 rgas
     real*8 cvg
     real*8 cpg
     real*8 nhp1
     real*8 nhm1
     real*8 nhm2
     real*8 t3
     real*8 t4
      real*8 t5
     real*8 t7
     real*8 alfa
     real*8 beta
     real*8 thta
```

c Mixture EOS tolerances

```
real*8 ztol1
      real*8 ztol2
c Detonation data
     real*8 qdet0
     real*8 e0
     real*8 eact
     real*8 rk
     real*8 rk1
     real*8 rk2
     real*8 pexp
     real*8 zexp
     real*8 th1
     real*8 th2
     real*8 rh1
     real*8 rh2
     real*8 rht
     real*8 rhti
     real*8 wr1
     real*8 wr2
     real*8 wr1r
      real*8 wr2r
c Grid/Timestep control data
     real*8 x1
     real*8 x2
     real*8 chx
     real*8 dx
      real*8 xc
     real*8 fct
     real*8 fct1
     real*8 fct2
     real*8 time
     real*8 tend
     real*8 dt
     real*8 dt0
     real*8 dt1
     real*8 dtmx
     real*8 cfl
     real*8 offs
c Derived data
     real*8 et
     real*8 ra
     real*8 ra2
     real*8 ea
     real*8 za
      real*8 rz
     real*8 omz
     real*8 rxmin
     real*8 bot
     real*8 bot2
     real*8 botr
      real*8 botz
```

```
real*8 dpdr
real*8 dpde
real*8 dpdz
real*8 a2
real*8 psgn
real*8 kap
real*8 eps
real*8 epsm
real*8 epsp
real*8 off
real*8 tmp
real*8 rl,rr
real*8 ul,ur
real*8 pl,pr
real*8 zl,zr
real*8 el, er
real*8 eel,eer
real*8 hhl, hhr
real*8 dger, dgwr, dgir
real*8 dqeu,dqwu,dqiu
real*8 dqep,dqwp,dqip
real*8 dqez,dqwz,dqiz
real*8 denm
real*8 dra, drb, drc, drd, dre
real*8 dua, dub, duc, dud, due
real*8 dpa,dpb,dpc,dpd,dpe
real*8 dza,dzb,dzc,dzd,dze
real*8 rat
real*8 phir
real*8 phiu
real*8 phip
real*8 phiz
real*8 phi
real*8 vhi
real*8 sqrl
real*8 sqrr
real*8 rsumi
real*8 rav
real*8 ri
real*8 uav
real*8 zav
real*8 eav
real*8 hav
real*8 aav
real*8 pav
real*8 delr
real*8 delv
real*8 delp
real*8 delz
```

```
real*8 detr
      real*8 pest
c Temperature estimation variables
     real*8 tk0
     real*8 dtkmx
     real*8 denmx
     real*8 numr
     real*8 e0cr
     real*8 eta
     real*8 rs
     real*8 rg
     real*8 de1
     real*8 de2
      real*8 de3
      real*8 de4
      real*8 de5
      real*8 de6
c Particle phase data
     real*8 xp1
     real*8 xp2
     real*8 dxp
     real*8 rdp
     real*8 dip
     real*8 rop
     real*8 pcp
      real*8 rep
      real*8 ppr
      real*8 tcon
     real*8 crppr
     real*8 nup
     real*8 hp
     real*8 cdp
     real*8 pum
     real*8 pam
     real*8 delu
     real*8 adelu
     real*8 hevol
     real*8 pvol
     real*8 cvol
     real*8 p0mas
      real*8 pmass
     real*8 alf1
     real*8 alf2
     real*8 alf21
     real*8 cd1
     real*8 cd2
      real*8 cd0
      real*8 mach
     real*8 dtp
c Array declarations
     real*8 x(imax)
      real*8 r(0:imax)
      real*8 p(0:imax)
```

```
real*8 u(0:imax)
      real*8 z(0:imax)
      real*8 ei(0:imax)
      real*8 a(0:imax)
      real*8 rxr(0:imax)
      real*8 c(8)
      real*8 top(8)
      real*8 topr(8)
      real*8 topz(8)
      real*8 rp(0:imax)
      real*8 pp(0:imax)
      real*8 up(0:imax)
      real*8 zp(0:imax)
      real*8 eip(0:imax)
      real*8 etp(0:imax)
      real*8 ap(0:imax)
      real*8 tk(imax)
      real*8 dtk(imax)
      real*8 zzl(imax)
      real*8 zzr(imax)
      real*8 qv(imax,4)
      real*8 qvp(imax,4)
      real*8 sg(imax,4)
      real*8 srx(imax,4)
      real*8 sp(imax,4)
      real*8 s(imax,4)
      real*8 aeg(4)
      real*8 evr(4,4)
      real*8 cwm(4)
      real*8 chk1(4,4)
      real*8 chk2(4,4)
      real*8 dq(4)
      real*8 v1(4)
      real*8 vn(4)
      real*8 fl(4)
      real*8 fr(4)
      real*8 fn(imax,4)
      real*8 dqv(4)
      real*8 derv(imax,2)
c Particle arrays
      integer pcel(npar)
      real*8 px(npar)
      real*8 pu(npar)
      real*8 pa(npar)
             Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
real*8 pxp(npar)
    real*8 pup(npar)
    real*8 pq(npar)
    real*8 ptk(npar)
    real*8 ptkp(npar)
Main Data Entry Section
c Grid data
    x1
        = 0d0
    x2
      = 200d0
    x2
        = 3.6d-2
    chx
       = 3.8d-2
c CPG EOS data
    gamm = 1.4d0
    pamb = 101325d0
    rgas = 287d0
c Extrapolation control data
    kap = 1d0/3d0
    kap = -1d0
    eps = 1d-12
c EOS control tolerances
    ztol1 = 1d-2
    ztol1 = 0d0
    ztol2 = 0.99d0
    ztol2 = 1d0
c HMX Hayes EOS Data (Xu)
   r0 = 1891d0
    h1
        = 1.35d10
С
   cvs = 1.5d3
C
    gh = 2.1d3
   nh = 9.8d0
С
    tk0 = 3d2
С
c HMX JWL EOS Data (Zukas/Xu)
    aj = 7.783d11
    bj
      = 0.07071d11
С
      = 0.00643d11
С
    сj
    r1 = 4.2d0
С
    r2
      = 1d0
С
       = 0.3d0
С
    wj
    cvg = (2.4d0 - 0.28d0*r0*1d-3 - 1.3d0)*1d3
c NM Hayes EOS Data
 r0 = 1.13d3
С
    h1 = 1.32d9
    cvs = 1.446d3
С
       = 1.356d3
    qh
```

C

С

```
nh = 7.144d0
С
    tk0 = 293d0
c NM JWL EOS Data
    aj = 209.2d9
С
    bj
       = 5.689d9
С
    Сj
       = 0.77d9
    r1
       = 4.4d0
С
       = 1.2d0
    r2
С
С
    wj = 0.3d0
    cvg = 1.3d3
С
c RDX Hayes EOS Data
    r0
       = 1.6d3
    h1
       = 13d9
    cvs = 1.163d3
    gh = 1.356d3
    nh
       = 6.3d0
    tk0 = 300d0
c RDX JWL EOS Data
       = 573.187d9
    aj
        = 14.639d9
    bj
       = 0.77d9
     сj
       = 4.6d0
    r1
    r2 = 1.4d0
    wj = 0.32d0
     cvg = 1.2d3
c Detonation reaction data
c CPG Test
    eact = 10d0
         = 16.418d0
    rk
    th1 = 0d0
С
    th2
         = 0d0
    rxmin = rk*dexp(-eact)
С
    qdet0 = 25d0
С
c HMX Test
        = 42d9
С
    pcj
        = 110d6
С
    rk1
С
    rk2
         = 0d0
   pexp = 3.5d0
C
    zexp = 0.93d0
С
         = 0d0
С
    th1
         = 0d0
С
    th2
    rxmin = rk1*((pamb/pcj)**pexp)
С
    qdet0 = (7.91d0 - 4.33d0*(r0*1d-3 - 1.3d0)**2
С
            -0.934d0*(r0*1d-3 - 1.3d0))*1d6
c NM Test
   pcj = 12.5d9
С
    pexp = 1d0
С
    zexp = 0.95d0
С
    rk1
          = 7.75d10
```

```
rk2 = 1.5d12
С
   th1 = 14500d0
С
   th2 = 29700d0
С
   rxmin = rk1*dexp(-th1/tk0)
С
   qdet0 = 4.530d5
c RDX Test
   pcj
       = 26.5d9
    rk1 = 110d6
    rk2
       = 0d0
    pexp = 3.5d0
    zexp = 0.93d0
    th1 = 0d0
    th2
       = 0d0
    rxmin = rk1*((pamb/pcj)**pexp)
    qdet0 = 5.375d6
c Particle data
    xp1 = 1.0d-2
    xp2 = 5.9d-2
   pmass = 4.3d0
    rop = 7860d0
       = 280d-6
    rdp
   pcp = 446d0
   mu = 1.7d-5
   mu = 1.0d-3
    tcon = 2.57d-2
c Code control data and flags
c Data
    off
       = 1d-6
    cfl = 0.5d0
        = 0
    nfil
        = 0
    nstart = 0
    nstp = 10
    ndmp = 1
    dtmx = 1d-2
    time = 0d0
    tend = 50d0
c Flags
    irst = 1
    iav = 1
    iext = 1
    ilim = 1
    ieos = 3
    igeo = 1
    irxn = 1
    iefx = 2
    ipar = 0
    idrg = 1
    imach = 1
```

```
c Debug control
      idbg1 = 0
      idbgf = 0
      idbgs = 0
      idbgp = 0
      write(*,*) ' Code Control Data:'
      write(*,*) ' nstp = ', nstp
      write(*,*) ' ndmp = ', ndmp
      write(*,*) ' tend = ',tend
      if (ipar .eq. 1) write(*,*) ' npar = ', npar
      write(*,*) ' '
      write(*,*) ' Flags:'
      write(*,*) ' irst = ',irst
      write(*,*) ' iav = ',iav
      write(*,*) ' iext = ',iext
      write(*,*) ' ilim = ',ilim
      write(*,*) ' '
      write(*,*) ' ieos = ',ieos
      write(*,*) ' igeo = ',igeo
      write(*,*) ' irxn = ', irxn
      write(*,*) ' iefx = ',iefx
      write(*,*) ' '
      write(*,*) ' ipar = ',ipar
      write(*,*) ' idrg = ',idrg
      write(*,*) ' imach = ',imach
      write(*,*) ' '
      pause
c Derived data
c Thermal data
      cpg = rgas + cvg
      ppr = cpg*tcon/mu
      crppr = ppr**c13
c EOS Parameters
     rh1 = r1*r0
     rh2 = r2*r0
     wr1 = wj/rh1
     wr1r = wr1/r0
     wr2 = wj/rh2
      wr2r = wr2/r0
      cjh = cj*(r0**(-(1d0 + wj)))
     nhp1 = nh + 1d0
      alfa = nh - 1d0
      nhm1 = alfa
      nhm2 = nh - 2d0
      e0 = cvg*tk0
c Hayes-I EOS
      t3 = cvs*tk0*qh/r0
      t4
         = h1/r0/nh/alfa
      t5
         = pamb/gh + t4
           = pamb/gh + beta + t4
            Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
thta = t3 - pamb/r0
      beta = thta + alfa*t4
c Compute coefficients for Hayes pressure derivatives
      c(1) = 1d0
      c(2) = beta
      c(3) = -t4
      c(4) = t5
      c(5) = aj
      c(6) = bj
      c(7) = qdet0 + e0
      c(8) = h1/gh/nh
c Particle phase parameters
      dip = 2d0*rdp
      p0mas = c43*pi*rop*rdp*rdp*rdp
      pvol = pmass/rop
      if (chx .le. x2) then
       write(*,*) ' '
       write(*,*) ' chx < x2.'
       write(*,*) ' '
        stop
      else
        dx
             = chx - x2
      endif
     cvol = c43*pi*x2*x2*x2
     cvol = hevol + pvol
      alf2 = pvol/cvol
      alf1 = 1d0 - alf2
      if (ipar .eq. 1 .and. alf1 .eq. 0d0) then write (*,*) ' '
        write(*,*) ' alf1 = 0!'
        write(*,*) ' '
        stop
      endif
      alf21 = alf2/alf1
c Other constants
      epsm = c14*(1d0 - kap)
      epsp = c14*(1d0 + kap)
      gam1 = gamm - 1d0
c Set up the solver report file
      open(90,file='rpt.txt',form='formatted')
      write(90,*) ' ******** Detonation Solver Report File
******
      write(90,*) ' '
      write(90,*) ' Reaction Data:'
      write(90,*) ' qdet = ',qdet0
      write(90,*) ' eact = ',eact
     write(90,*) ' rk = ',rk
      write(90,*) ' rk1 = ',rk1
      write(90,*) ' rk2
                          = ',rk2
      write(90,*) ' pexp = ',pexp
      write(90,*) ' zexp = ',zexp
            Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
write(90,*) ' Pcj = ',pcj
                   = ',th1
write(90,*) ' th1
write(90,*) ' th2
                   = ', th2
write(90,*) ' '
write(90,*) ' rxmin = ', rxmin
write(90,*) ' '
write(90,*) ' EOS Control Data:'
write(90,*) ' ztol1 = ', ztol1
write(90,*) ' ztol2 = ', ztol2
write(90,*) ' '
write(90,*) ' CPG EOS Data:'
write(90,*) ' gamm = ', gamm
write(90,*) ' gam1 = ', gam1
write(90,*) ' '
write(90,*) ' Hayes-I EOS Data:'
write(90,*) ' H1 = ',h1
write(90,*) ' Cvs = ', cvs
write(90,*) ' g = ',gh
write(90,*) ' N
                  = ', nh
write(90,*) ' T0 = ',tk0
write(90,*) ' '
do nn = 1,8
 write(90,*) 'c(',nn,') = ',c(nn)
enddo
write(90,*) ' '
write(90,*) ' alfa = ',alfa
write(90,*) ' beta = ', beta
write(90,*) ' thta = ',thta
write(90,*) ' t3 = ',t3
                 = ',t4
write(90,*) ' t4
write(90,*) ' t5 = ',t5
write(90,*) ' t7 = ',t7
write(90,*) ' '
write(90,*) ' JWL EOS Data:'
write(90,*) ' r0 = ',r0
write(90,*) ' A
                 = ',aj
                = ',bj
write(90,*) ' B
write(90,*) ' C
                 = ',cj
write(90,*) ' R1 = ',r1
write(90,*) ' R2 = ',r2
write(90,*) ' W = ',wj
write(90,*) ' Cvg = ', cvg
write(90,*) ' Cpg = ',cpg
write(90,*) ' e0
                 = ',e0
write(90,*) ' '
write(90,*) ' Particle Data:'
write(90,*) ' pmass = ',pmass
write(90,*) 'rop = ',rop
write(90,*) ' rdp = ', rdp
write(90,*) ' dip = ', dip
write(90,*) ' mu
                   = ', mu
write(90,*) ' tcon = ',tcon
write(90,*) ' ppr = ',ppr
write (90,*) 'p0mas = ',p0mas
write(90,*) ' hevol = ',hevol
write(90,*) 'pvol = ',pvol
write(90,*) ' cvol = ',cvol
```

```
write(90,*) ' alf1 = ',alf1
write(90,*) ' alf2 = ',alf2
write(90,*) ' '
write(90,*) ' Other Data:'
write(90,*) ' kap = ',kap
write(90,*) ' epsm = ',epsm
write(90,*) ' epsp = ',epsp
write(90,*) ' '
close(90)

write(*,*) ' '
write(*,*) ' Report file ready.'
```

```
dx = (x2 - x1)/(imax-1)
offs = 0.1d0
do i = 1,imax
    x(i) = x1 + (i-1)*dx
c write(*,*) ' i = ',i,' x = ',x(i)
enddo
```

```
if (irst .eq. 0) then
```

c Set time zero primitive variables do i = 1,imax-1 xc = c12*(x(i) + x(i+1))

```
if (ieos .eq. 0) then
  r(i) = 1d0/(1d0 + 3d0*dexp(-xc*xc))
  p(i) = 1d0
  u(i) = 0d0
  z(i) = 0d0
```

```
else if (ieos .eq. 1) then  r(i) = 1.2d0  c  p(i) = 25d0*pamb/(1.00001d0 - dexp(-xc*xc))
```

```
= ((x2-xc)*(40d0*pamb/(1.00001d0 - dexp(-xc*xc)))
         p(i)
    &
                + x2*pamb)/x2
         write(70,*) xc,' ',p(i)
С
         if (xc .lt. offs) then
С
С
           p(i) = fct*(xc-offs)*(xc-offs) + pamb
С
          else
           p(i) = pamb
С
С
          endif
          u(i)
                = 0d0
          z(i)
                = 0d0
c Hayes-I/JWL EOS ICs
else if (ieos .eq. 2) then
               = r0
         r(i)
         p(i)
                = 25d0*pamb/(1.00001d0 - dexp(-xc*xc))
С
                = ((x2-xc)*(25d0*pamb/(1.00001d0 - dexp(-xc*xc)))
С
         p(i)
С
    &
                + x2*pamb)/x2
С
         p(i)
                = pamb
c HMX or NM
                = 2d0*pcj*dexp(-xc*xc/0.001d0/0.001d0) + pamb
          p(i)
                = 0d0
          u(i)
                = 0d0
          z(i)
          tk(i) = tk0
c Hayes-II/JWL EOS ICs
else if (ieos .eq. 3) then
         r(i)
                = r0
c HMX/RDX/NM
                = 2d0*pcj*dexp(-xc*xc/0.004d0/0.004d0) + pamb
C
         p(i)
          if (i .le. 100) then
           p(i)
               = 5d0*pcj + pamb
          else
           p(i)
                  = pamb
          endif
c NM
         p(i)
                = 2d0*pcj*dexp(-xc*xc/0.0005d0/0.0005d0) + pamb
         u(i)
                = 0d0
          z(i)
               = 0d0
          tk(i)
                = (p(i) - pamb)/cvs/gh + tk0
          Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
else
          write(*,*) ' '
          write(*,*) ' Unknown EOS'
         write(*,*) ' '
          stop
        endif
      enddo
c Particle ICs
if (ipar .eq. 1) then
c Check particle bounds
        if (xp1 .lt. x1 .or. xp2 .gt. x2) then
          write(*,*) ' '
          write(*,*) ' Particle X limits are wrong.'
         write(*,*) ' '
          stop
        endif
        dxp = (xp2 - xp1) / (npar - 1)
        do np = 1, npar
         px(np) = xp1 + (np-1)*dxp
         pu(np) = 0d0
         ptk(np) = tk0
         pa(np) = 0d0
         pq(np) = 0d0
          write(*,*) px(np),' ',pu(np),' ',pa(np)
C
        enddo
С
        pause
        write(*,*) ' '
        write(*,*) ' Particles ready.'
        write(*,*) ' '
      endif
     else if (irst .eq. 1) then
c Read the restart file
write(*,*) ' Reading restart file.'
      open(40, file='restart.data', form='unformatted')
      read(40) nstart
      read(40) nfil
      read(40) time
      do i = 1, imax-1
        read(40) r(i), p(i), u(i), z(i)
      enddo
      close(40)
     else
      write(*,*) ' '
      write(*,*) ' Unknown restart option.'
          Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
write(*,*) ' '
    endif
c Compute initial derived flow variables for the cells
do i = 1, imax-1
     if (ieos .eq. 0) then
c CPG EOS internal energy and pressure derivatives
ei(i) = p(i)/r(i)/gam1 - z(i)*qdet0
       dpdr = gam1*ei(i) + gam1*z(i)*qdet0
       dpde = gam1*r(i)
       dpdz = gam1*r(i)*qdet0
     else if (ieos .eq. 1) then
c JWL EOS internal energy and pressure derivatives
rht = r(i)/r0
       rhti = 1d0/rht
         = 1d0/r(i)
       tmp = p(i) - aj*(1d0 - wr1*r(i))*dexp(-rh1*ri)
   &
               - bj*(1d0 - wr2*r(i))*dexp(-rh2*ri)
       ei(i) = tmp/wj*ri - z(i)*qdet0
       tmp = aj*(rh1*ri*ri - wj*ri - wj/rh1)*dexp(-rh1*ri)
       tmp = tmp + bj*(rh2*ri*ri - wj*ri - wj/rh2)*dexp(-rh2*ri)
       dpdr = tmp + wj*ei(i) + wj*z(i)*qdet0
       dpde = wj*r(i)
       dpdz = wj*r(i)*qdet0
     else if (ieos .eq. 2) then
c Hayes-I/JWL EOS internal energy and pressure derivatives
= r(i)
       ra
       ra2 = ra*ra
       za
         = z(i)
          = ra*za
       rΖ
       omz = 1d0 - za
c Solid phase limit
       if (za .le. ztol1) then
        ei(i) = p(i)/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7
        dpdr = beta*r0*qh/ra2
        Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
- alfa*gh*t4*(ra**(alfa-1d0))/(r0**alfa)
     &
            dpde = gh
c Mixed phases
          else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator functions
            bot = omz/gh + 1d0/wj/ra
            if (bot .1t. 1d-10) then
              write(*,*) ' '
              write(*,*) ' Zero denonimator term.'
              write(*,*) ' '
              stop
            endif
            bot2 = bot*bot
            botr = -1d0/wj/ra2
c Evaluate numerator functions
            top(2) = omz - r0/ra
            top(3) = (omz**nh)*((ra/r0)**alfa)
            top(4) = omz
            top(5) = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
            top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
            top(7) = za
c Compute internal energy
            ei(i) = bot*p(i)
            do nn = 2,7
              ei(i) = ei(i) - c(nn)*top(nn)
            enddo
            top(1) = ei(i)
c Compute derivatives for numerator functions
            topr(1) = 0d0
            topr(2) = r0/ra2
            topr(3) = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0))
            topr(4) = 0d0
            topr(5) = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2
            topr(6) = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2
            topr(7) = 0d0
c Compute density and internal energy derivatives of pressure
            dpdr = 0d0
            do nn = 1,7
              dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn))
            enddo
            dpdr = dpdr/bot2
            dpde = 1d0/bot
c Gas phase limit
          else
            ei(i) = p(i)/wj/ra
     &
                  - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra)
     &
                  - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)
                  - qdet0 - e0
     &
            Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
dpdr = wj*ei(i)
                + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra)
                + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra)
    &
    &
                + wj*(qdet0 + e0)
           dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra)
                 + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra)
    ď
                 + ra*wj*(qdet0 + e0)
    &
           dpde = wj*ra
         endif
       else if (ieos .eq. 3) then
c Hayes-II/JWL EOS internal energy and pressure derivatives
= r(i)
         ra
         ra2 = ra*ra
              = z(i)
         za
              = ra*za
             = 1d0 - za
         omz
c Solid phase limit
         if (za .le. ztol1) then
           ei(i) = p(i)/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7
                 - h1/gh/nh*(((ra/r0)**nh) - 1d0)
    &
           dpdr = beta*r0*gh/ra2
                 - alfa*gh*t4*(ra**(alfa-1d0))/(r0**alfa)
    &
                + h1/r0*((ra/r0)**nhm1)
           dpde = qh
c Mixed phases
         else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator functions
           bot = omz/gh + 1d0/wj/ra
           if (bot .1t. 1d-10) then
             write(*,*) ' '
             write(*,*) ' Zero denonimator term.'
             write(*,*) ' '
             stop
           endif
           bot2 = bot*bot
           botr = -1d0/wj/ra2
c Evaluate numerator functions
           top(2) = omz - r0/ra
           top(3) = (omz**nh)*((ra/r0)**alfa)
           top(4)
                  = omz
           top(5)
                  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
           top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
           Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
top(7) = za
            top(8) = (omz**nhp1)*((ra/r0)**nh) + za - 1d0
c Compute internal energy
            ei(i) = bot*p(i)
            do nn = 2,8
              ei(i) = ei(i) - c(nn)*top(nn)
            enddo
            top(1) = ei(i)
c Compute derivatives for numerator functions
            topr(1) = 0d0
            topr(2) = r0/ra2
            topr(3) = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0))
            topr(4) = 0d0
            topr(5) = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2
            topr(6) = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2
                    = 0d0
            topr(7)
            topr(8) = nh/r0*(omz**nhp1)*((ra/r0)**nhm1)
c Compute density and internal energy derivatives of pressure
            dpdr = 0d0
            do nn = 1,8
              dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn))
            enddo
            dpdr = dpdr/bot2
            dpde = 1d0/bot
c Gas phase limit
          else
            ei(i) = p(i)/wj/ra
     &
                  - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra)
                  - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)
     &
                  - qdet0 - e0
     Ÿ
            dpdr = wj*ei(i)
                  + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra)
     δ
                  + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra)
     &
     &
                  + wj*(qdet0 + e0)
            dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra)
                  + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra)
     &
     Ÿ
                  + ra*wj*(qdet0 + e0)
            dpde = wj*ra
          endif
        else
          write(*,*) ' '
          write(*,*) ' Unknown EOS'
          write(*,*) ' '
          stop
        endif
```

c Compute the speed of sound

```
if (dpdr .lt. 0d0) dpdr = dabs(dpdr)
       a2
             = dpdr + p(i)*dpde/r(i)/r(i)
       if (a2 .1t. 0d0) then
         write(*,*) ' '
         write(*,*) ' Negative initial squared sound speed!'
         write(*,*) ' i = ', i
         write(*,*) ' '
         stop
       endif
       a(i)
            = dsqrt(a2)
c Initial reaction rate
c Floor on 1 - z near 0
       if (z(i) .gt. ztol2) then
         omz = 0d0
       else
         omz = 1d0 - z(i)
       endif
c Test Rate 1
       rxr(i) = rk1*dsqrt(omz)
       if (p(i,j) - 1d9 .lt. 0d0) rxr(i) = 0d0
       if (p(i,j) - 1d9 \cdot eq \cdot 0d0) rxr(i) = 0.5d0*rxr(i)
c CPG Test Rate
       rxr(i) = rk*omz*dexp(-eact*r(i)/p(i)) - rxmin
c HMX Test Rate
       rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin
       if (rxr(i) .lt. 0d0) rxr(i) = 0d0
c NM Test Rate
    rxr(i) = (rk1*dexp(-th1/tk(i))*omz
             + rk2*dexp(-th2/tk(i))*z(i))*(omz**zexp) - rxmin
       if (rxr(i) .lt. 0d0) rxr(i) = 0d0
c RDX Test Rate
       rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin
       if (rxr(i) .lt. 0d0) rxr(i) = 0d0
     enddo
c Write the initial conditions files
     if (irst .eq. 0) then
       open(21, file='heic.dat', form='formatted')
 70
       format(1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,
              1x, d12.6, 1x, d12.6
 72
       format(1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,
              1x, d12.6, 1x, d12.6, 1x, d12.6
       do i = 1, imax-1
         xc = c12*(x(i) + x(i+1))
         write(21,72) xc,r(i),u(i),p(i),z(i),ei(i),a(i),rxr(i),tk(i)
           Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
enddo
    close(21)
    write(*,*) ' ICs ready.'
    write(*,*) ' '
    if (ipar .eq. 1) then
     open(21, file='paic.dat', form='formatted')
     do np = 1, npar
      write(21,*) px(np),' ',0d0,' ',pu(np)
     enddo
     close(21)
    endif
   endif
   pause
c Set the internal energy correction and scale variables
e0cr = 0d0
   eta = 0.999d0
c Main Solver Loop
do while (n .lt. nstp .and. time .lt. tend)
c Allocate particles to cells
if (ipar .eq. 1) then
     do np = 1, npar
      pcel(np) = int((px(np) - x1)/dx) + 1
      write(*,*) ' px(',np,') = ',px(np)
      write(*,*) ' pcel(',np,') = ',pcel(np)
      write(*,*) ' '
     enddo
     pum = 0d0
     pam = 0d0
     do np = 1, npar
      if (dabs(pu(np)) .gt. pum) pum = dabs(pu(np))
      if (dabs(pa(np)) .gt. pam) pam = dabs(pa(np))
     enddo
    endif
c Compute time step
dt = 1d2
    do i = 1, imax-1
     dx = x(i+1) - x(i)
     dt0 = dx/(dabs(u(i)) + a(i))
```

С

С

```
if (ipar .eq. 1) then
            dt1 = dx/(dabs(u(i)) + pum)
            dt0 = min(dt0, dt1)
С
            dt1 = 2d1*dx/pam
            dt0 = min(dt0, dt1)
          endif
          if (dt0 .lt. dt) dt = dt0
        enddo
        dt = cfl*dt
        dt = min(dt, dtmx)
        if (idbg1 .eq. 1) then
          write(*,*) ' dt = ',dt
          write(*,*) ' '
        endif
c Set boundary conditions
c Symmetric at x = 0
        r(0) = r(1)
        u(0) = -u(1)
        p(0) = p(1)
        z(0) = z(1)
        ei(0) = ei(1)
c Fixed at x = xmax
      r(imax) = 1d0
       u(imax) = 0d0
       p(imax) = 1d0
С
        z(imax) = 0d0
        ei(imax) = p(imax)/r(imax)/gam1
c Extrapolated at x = xmax
        r(imax) = r(imax-1)
        u(imax) = u(imax-1)
        p(imax) = p(imax-1)
        z(imax) = z(imax-1)
        ei(imax) = ei(imax-1)
        if (idbg1 .eq. 1) then
        write(*,*) ' BCs:'
        write(*,*) ' r(0) = ',r(0)
        write(*,*) 'u(0) = ',u(0)
        write(*,*) ' p(0) = ', p(0)
write(*,*) ' z(0) = ', z(0)
        write(*,*) ' ei(0) = ',ei(0)
        write(*,*) ' '
        write(*,*) ' r(imax) = ',r(imax)
        write(*,*) 'u(imax) = ',u(imax)
        write(*,*) ' p(imax) = ',p(imax)
        write(*,*) ' z(imax) = ', z(imax)
        write(*,*) ' ei(imax) = ',ei(imax)
        write(*,*) ' '
        endif
```

```
c Floor on 1 - z near 0
     if (z(imax-1) .qt. ztol2) then
       omz = 0d0
     else
       omz = 1d0 - z(imax-1)
     endif
c HMX or RDX Test
     rxmin = rk1*(omz**zexp)*((p(imax-1)/pcj)**pexp)
c NM Test
     rxmin = (rk1*dexp(-th1/tk(imax-1))*omz
         + rk2*dexp(-th2/tk(imax-1))*z(imax-1))*(omz**zexp)
     write(^*,^*) ' rxmin = ',rxmin
С
     write(*,*) ' rxr = ',rxr(imax-1)
c Compute conservative variables; assemble source terms
do i = 1, imax-1
       qv(i,1) = r(i)
       qv(i,2) = r(i)*u(i)
            = ei(i) + 0.5d0*u(i)*u(i)
       qv(i,3) = r(i) *et
       qv(i, 4) = r(i)*z(i)
c Compute the source vectors
c Geometric
       xc = c12*(x(i) + x(i+1))
       sq(i,1) = -r(i)*u(i)/xc
       sg(i,2) = -r(i)*u(i)*u(i)/xc
       sg(i,3)
              = -u(i)*(r(i)*et + p(i))/xc
       sq(i,4)
             = -r(i)*u(i)*z(i)/xc
c Reaction rate
c Floor on 1 - z near 0
       if (z(i) .gt. ztol2) then
        omz = 0d0
       else
        omz = 1d0 - z(i)
       endif
c CPG Test Rate
      rxr(i) = rk*omz*dexp(-eact*r(i)/p(i)) - rxmin
c HMX Test Rate
      rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin
       if (rxr(i) .lt. 0d0) rxr(i) = 0d0
c NM Test Rate
```

```
rxr(i) = (rk1*dexp(-th1/tk(i))*omz
         + rk2*dexp(-th2/tk(i))*z(i))*(omz**zexp) - rxmin
        if (rxr(i) .lt. 0d0) rxr(i) = 0d0
c RDX Test Rate
        rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin
        if (rxr(i) .lt. 0d0) rxr(i) = 0d0
c Reaction rate terms
        srx(i,1) = 0d0
        srx(i,2) = 0d0
        srx(i,3) = 0d0
        srx(i,4) = r(i)*rxr(i)
c Particle phase
               = 0d0
        sp(i,1)
        sp(i,2) = 0d0
        sp(i,3) = 0d0
        sp(i,4) = 0d0
      enddo
c Compute particle phase coupling terms
if (ipar .eq. 1) then
        do np = 1, npar
c Momentum
          sp(pcel(np), 2) = sp(pcel(np), 2) - p0mas*pa(np)
c Energy
          sp(pcel(np),3) = sp(pcel(np),3) - pq(np)
        enddo
      endif
c Compute the total source vector
do i = 1, imax-1
        if (sp(i,2) .ne. 0d0) then
С
          write(*,*) ' i = ',i,' sp = ',sp(i,2)
С
        endif
        do m = 1, 4
          s(i,m) = igeo*sg(i,m) + irxn*srx(i,m) + ipar*sp(i,m)
        enddo
        if (idbgs .eq. 1) then
          write(*,*) 'i = ',i
          write(*,*) ' q1 = ',qv(i,1)
          write(*,*) ' q2 = ', qv(i,2)
          write(*,*) ' q3 = ',qv(i,3)
          write(*,*) ' q4 = ',qv(i,4)
          write(*,*) ' '
          Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
write(*,*) ' s1 = ', s(i,1)
write(*,*) ' s2 = ', s(i,2)
           write(*,*) 's3 = ',s(i,3)
           write(*,*) 's4 = ',s(i,4)
           write(*,*) ' '
           pause
         endif
       enddo
c Compute the numerical flux at each grid point
format (2x, d12.6, 2x, d12.6, 2x, d12.6, 2x, d12.6)
       do i = 1, imax
c Left interface variables
         if (i .eq. 1) then
c First order at the boundary
           rl = r(i-1)
           ul = u(i-1)
           pl = p(i-1)
           z1 = z(i-1)
           rr = r(i)
           ur = u(i)
           pr = p(i)
           zr = z(i)
         else if (2 .le. i .and. i .le. imax-1) then
c Higher-order
           if (ilim .eq. 0) then
c Hossaini limiting strategy
             dqwr = r(i-1) - r(i-2)

dqer = r(i) - r(i-1)
             dqir = r(i+1) - r(i)
             phir = c14*(2d0*dqwr*dqer + eps)
    &
                  /(dqwr*dqwr + dqer*dqer + eps)
             dqwu = u(i-1) - u(i-2)
             dqeu = u(i) - u(i-1)
             dqiu = u(i+1) - u(i)
             phiu = c14*(2d0*dqwu*dqeu + eps)
                  /(dqwu*dqwu + dqeu*dqeu + eps)
    &
             dqwp = p(i-1) - p(i-2)
             dqep = p(i) - p(i-1)
             dqip = p(i+1) - p(i)
             phip = c14*(2d0*dqwp*dqep + eps)
    &
                  /(dqwp*dqwp + dqep*dqep + eps)
             dqwz = z(i-1) - z(i-2)
             dqez = z(i)
                           -z(i-1)
             dqiz = z(i+1) - z(i)
             phiz = c14*(2d0*dqwz*dqez + eps)
           Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
/(dqwz*dqwz + dqez*dqez + eps)
     &
c Density
             rl
                  = r(i-1) + iext*phir*(epsm*dqwr + epsp*dqer)
                 = r(i) - iext*phir*(epsm*dqir + epsp*dqer)
             rr
c Velocity
                  = u(i-1) + iext*phiu*(epsm*dqwu + epsp*dqeu)
             ul
                         - iext*phiu*(epsm*dqiu + epsp*dqeu)
             ur
                  = u(i)
c Pressure
                  = p(i-1) + iext*phip*(epsm*dqwp + epsp*dqep)
             pl
                  = p(i)
                           - iext*phip*(epsm*dqip + epsp*dqep)
             pr
c Rx Progress
                  = z(i-1) + iext*phiz*(epsm*dqwz + epsp*dqez)
             zl
                  = z(i)
                         - iext*phiz*(epsm*dqiz + epsp*dqez)
           else if (ilim .eq. 1) then
c Hirsch limiting strategy
             dra = r(i+1) - r(i)
             drb = r(i) - r(i-1)
             drc = r(i-1) - r(i-2)
             drd = drb - drc
             dre = dra
                          - drb
             dua = u(i+1) - u(i)
             dub = u(i) - u(i-1)
             duc = u(i-1) - u(i-2)
             dud = dub
                         - duc
             due = dua
                           - dub
             dpa = p(i+1) - p(i)
             dpb = p(i)
                           - p(i-1)
             dpc = p(i-1) - p(i-2)
             dpd = dpb
                           - dpc
             dpe = dpa
                          - dpb
             dza = z(i+1) - z(i)
             dzb = z(i) - z(i-1)
             dzc = z(i-1) - z(i-2)
             dzd = dzb - dzc
             dze = dza
                           - dzb
c Check monotonicity
             imon = 1
             if (dra*drb .lt. 0d0) imon = 0
             if (drb*drc .lt. 0d0) imon = 0
             if (dua*dub .lt. 0d0) imon = 0
             if (dub*duc .lt. 0d0) imon = 0
             if (dpa*dpb .lt. 0d0) imon = 0
             if (dpb*dpc .lt. 0d0) imon = 0
             if (dza*dzb .lt. 0d0) imon = 0
             if (dzb*dzc .lt. 0d0) imon = 0
             if (imon .eq. 0) then
```

```
c First-order interface is non-monotonic
                rl = r(i-1)
                ul = u(i-1)
                pl = p(i-1)
                z1 = z(i-1)
                rr = r(i)
                ur = u(i)
                pr = p(i)
                zr = z(i)
              else
c First-order interface is monotonic
                denm = drb*drb + drc*drc + eps
                phi = (drb*drd + eps)/denm
                vhi = (drc*drd + eps)/denm
                rl
                   = r(i-1) + iext*(epsm*phi*drc
                                    + epsp*vhi*drb)
                denm = dra*dra + drb*drb + eps
                phi = (drb*dre + eps)/denm
                vhi = (dra*dre + eps)/denm
                            - iext*(epsm*phi*dra
                    = r(i)
                rr
     &
                                    + epsp*vhi*drb)
                denm = dub*dub + duc*duc + eps
                phi = (dub*dud + eps)/denm
                vhi = (duc*dud + eps)/denm
                    = u(i-1) + iext*(epsm*phi*duc
                ul
     &
                                    + epsp*vhi*dub)
                denm = dua*dua + dub*dub + eps
                phi = (dub*due + eps)/denm
                vhi = (dua*due + eps)/denm
                    = u(i) - iext*(epsm*phi*dua
                                    + epsp*vhi*dub)
     &
                denm = dpb*dpb + dpc*dpc + eps
                phi = (dpb*dpd + eps)/denm
               vhi = (dpc*dpd + eps)/denm
                    = p(i-1) + iext*(epsm*phi*dpc
                pl
                                    + epsp*vhi*dpb)
                denm = dpa*dpa + dpb*dpb + eps
                phi = (dpb*dpe + eps)/denm
                vhi = (dpa*dpe + eps)/denm
                             - iext*(epsm*phi*dpa
                    = p(i)
                pr
     &
                                    + epsp*vhi*dpb)
                denm = dzb*dzb + dzc*dzc + eps
                phi = (dzb*dzd + eps)/denm
               vhi = (dzc*dzd + eps)/denm
                    = z(i-1) + iext*(epsm*phi*dzc
     &
                                    + epsp*vhi*dzb)
```

```
denm = dza*dza + dzb*dzb + eps
                phi = (dzb*dze + eps)/denm
                vhi = (dza*dze + eps)/denm
                zr = z(i) - iext*(epsm*phi*dza)
     &
                                    + epsp*vhi*dzb)
              endif
            else
              write(*,*) ' '
              write(*,*) ' Unknown limiting strategy'
              write(*,*) ' '
            endif
c Set ceiling on zl, zr
            zl = min(zl,1d0)
            zr = min(zr, 1d0)
          else
c First order at imax
           rl = r(i-1)
            ul = u(i-1)
            pl = p(i-1)
            z1 = z(i-1)
           rr = r(i)
            ur = u(i)
            pr = p(i)
            zr = z(i)
          endif
         zzl(i) = zl
          zzr(i) = zr
c Final monotonicity check
         imon = 0
          rat = (r(i) - r(i-1))*(rr - rl)
         if (rat .lt. 0d0) imon = 1
          rat = (u(i) - u(i-1))*(ur - ul)
          if (rat .1t. 0d0) imon = 2
          rat = (p(i) - p(i-1))*(pr - pl)
          if (rat .lt. 0d0) imon = 3
          rat = (z(i) - z(i-1))*(zr - z1)
          if (rat .lt. 0d0) imon = 4
c Set first order interface
          if (imon .ne. 0) then
           rl = r(i-1)
            rr = r(i)
            ul = u(i-1)
            ur = u(i)
            pl = p(i-1)
            pr = p(i)
            z1 = z(i-1)
```

```
zr = z(i)
       endif
c Calculate internal energy
       if (ieos .eq. 0) then
c CPG EOS
el = pl/gam1/rl - zl*qdet0
        er = pr/gam1/rr - zr*qdet0
       else if (ieos .eq. 1) then
c JWL EOS
rht = rl/r0
        rhti = 1d0/rht
        ri = 1d0/rl
        tmp = pl - aj*(1d0 - wr1*rl)*dexp(-rh1*ri)
                - bj*(1d0 - wr2*rl)*dexp(-rh2*ri)
        el = tmp*ri/wj - zl*qdet0
        rht = rr/r0
        rhti = 1d0/rht
        ri
            = 1d0/rr
        tmp = pr - aj*(1d0 - wr1*rr)*dexp(-rh1*ri)
   &
                - bj*(1d0 - wr2*rr)*dexp(-rh2*ri)
        er = tmp*ri/wj - zr*qdet0
       else if (ieos .eq. 2) then
c Hayes-I/JWL EOS
c Left of interface; set arguments
        ra = rl
        za = z1
        rz = ra*za
        omz = 1d0 - za
c Solid phase limit
        if (za .le. ztol1) then
          el = pl/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7
c Mixed phases
        else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator function
          bot = omz/gh + 1d0/wj/ra
          if (bot .lt. 1d-10) then
           write(*,*) ' '
           write(*,*) ' Zero denonimator term.'
        Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
write(*,*) ' '
                stop
              endif
c Evaluate numerator functions
              top(2) = omz - r0/ra
              top(3) = (omz**nh)*((ra/r0)**alfa)
              top(4) = omz
              top(5) = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
              top(7) = za
              el = bot*pl
              do nn = 2,7
                el = el - c(nn)*top(nn)
              enddo
c Gas phase limit
            else
              el = pl/wj/ra
                  - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra)
     &
                  - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)
     &
                  - qdet0 - e0
     &
            endif
c Right of interface; set arguments
            ra = rr
            za = zr
            rz = ra*za
            omz = 1d0 - za
c Solid phase limit
            if (za .le. ztol1) then
              er = pr/qh + beta*r0/ra + t4*((ra/r0)**alfa) - t7
c Mixed phases
            else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator function
              bot = omz/gh + 1d0/wj/ra
              if (bot .1t. 1d-10) then
                write(*,*) ' '
                write(*,*) ' Zero denonimator term.'
                write(*,*) ' '
                stop
              endif
c Evaluate numerator functions
              top(2) = omz - r0/ra
              top(3) = (omz**nh)*((ra/r0)**alfa)
              top(4) = omz
              top(5) = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
              top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
                      = za
              top(7)
```

```
c Compute internal energy
            er = bot*pr
            do nn = 2,7
              er = er - c(nn) *top(nn)
            enddo
c Gas phase limit
          else
            er = pr/wj/ra
               - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra)
               - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)
               - qdet0 - e0
          endif
        else if (ieos .eq. 3) then
c Hayes-II/JWL EOS
c Left of interface; set arguments
          ra = rl
          za = z1
          rz = ra*za
          omz = 1d0 - za
c Solid phase limit
          if (za .le. ztol1) then
            el = pl/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7
    &
               - h1/gh/nh*(((ra/r0)**nh) - 1d0)
c Mixed phases
          else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator function
            bot = omz/gh + 1d0/wj/ra
            if (bot .lt. 1d-10) then
              write(*,*) ' '
              write(*,*) ' Zero denonimator term.'
              write(*,*) ' '
              stop
            endif
c Evaluate numerator functions
            top(2) = omz - r0/ra
            top(3) = (omz**nh)*((ra/r0)**alfa)
            top(4) = omz

top(5) = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
            top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
            top(7) = za
            top(8) = (omz**nhp1)*((ra/r0)**nh) + za - 1d0
            el = bot*pl
            do nn = 2,8
```

```
el = el - c(nn)*top(nn)
              enddo
c Gas phase limit
            else
              el = pl/wj/ra
                  - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra)
                 - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)
     &
                  - qdet0 - e0
            endif
c Right of interface; set arguments
            ra = rr
            za = zr
            rz = ra*za
            omz = 1d0 - za
c Solid phase limit
            if (za .le. ztol1) then
              er = pr/qh + beta*r0/ra + t4*((ra/r0)**alfa) - t7
                 - h1/gh/nh*(((ra/r0)**nh) - 1d0)
c Mixed phases
            else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator function
              bot = omz/gh + 1d0/wj/ra
              if (bot .1t. 1d-10) then
                write(*,*) ' '
                write(*,*) ' Zero denonimator term.'
                write(*,*) ' '
                stop
              endif
c Evaluate numerator functions
              top(2) = omz - r0/ra
              top(3) = (omz**nh)*((ra/r0)**alfa)
              top(4) = omz
              top(5) = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
              top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
              top(7) = za
              top(8) = (omz**nhp1)*((ra/r0)**nh) + za - 1d0
c Compute internal energy
              er = bot*pr
              do nn = 2,8
                er = er - c(nn) *top(nn)
c Gas phase limit
            else
              er = pr/wj/ra
                  - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra)
            Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
- bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)
     &
     &
                  - qdet0 - e0
            endif
          else
            write(*,*) ' '
            write(*,*) ' Unknown EOS'
            write(*,*) ' '
            stop
          endif
c Total energy/mass
          eel = el + 0.5d0*ul*ul
          hhl = eel + pl/rl
          eer = er + 0.5d0*ur*ur
          hhr = eer + pr/rr
          if (imon .ne. 0) then
С
            write(*,*) ' '
С
            write(*,*) ' Monotonicity violation - ',imon
С
            write(*,*) ' i = ', i
С
            write(*,*) ' '
C
            write(*,*) ' r(i-1) = ', r(i-1)
С
            write(*,*) ' rl = ',rl
С
            write(*,*) ' rr
                                = ',rr
С
            write(*,*) ' r(i) = ',r(i)
С
            write(*,*) ' '
С
            write(*,*) ' u(i-1) = ', u(i-1)
С
            write(*,*) ' ul = ',ul
С
                                 = ',ur
            write(*,*) ' ur
С
            write(*,*) 'u(i) = ',u(i)
С
            write(*,*) ' '
С
            write(*,*) ' p(i-1) = ', p(i-1)
С
            write(*,*) ' pl
write(*,*) ' pr
                               = ',pl
= ',pr
С
С
            write(*,*) ' p(i) = ',p(i)
С
            write(*,*) ' '
С
C
            pause
          endif
С
      format (2x, d12.6, 2x, d12.6, 2x, d12.6)
С
          if (n .eq. 177) then
            write(25,80) r(i-1), rr, r(i)
C
          endif
С
c Roe averages
          if (iav .eq. 1) then
            sqrl = dsqrt(rl)
            sqrr = dsqrt(rr)
            rsumi = 1d0/(sqrl + sqrr)
                   = sqrl*sqrr
            rav
            uav
                   = (sqrl*ul + sqrr*ur)*rsumi
                   = (sqrl*zl + sqrr*zr)*rsumi
            zav
                   = \min(zav, 1d0)
            Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
eav = (sqrl*el + sqrr*er)*rsumi
        hav = (sqrl*hhl + sqrr*hhr)*rsumi
       else
c Test arithmetic averages
        rav = 0.5d0*(rl + rr)
        uav = 0.5d0*(ul + ur)
        zav = 0.5d0*(zl + zr)
            = 0.5d0*(el + er)
        eav
        hav
            = 0.5d0*(hhl + hhr)
       endif
       pav = rav*(hav - eav - 0.5d0*uav*uav)
c Calculate averaged pressure derivatives
       if (ieos .eq. 0) then
c CPG EOS
dpdr = gam1*eav + gam1*zav*gdet0
        dpde = gam1*rav
        dpdz = gam1*rav*qdet0
       else if (ieos .eq. 1) then
c JWL EOS
ri = 1d0/rav
        tmp = aj*(rh1*ri*ri - wj*ri - wj/rh1)*dexp(-rh1*ri)
        tmp = tmp + bj*(rh2*ri*ri - wj*ri - wj/rh2)*dexp(-rh2*ri)
        dpdr = tmp + wj*eav + wj*zav*qdet0
        dpde = wj*rav
        dpdz = wj*rav*qdet0
       else if (ieos .eq. 2) then
c Hayes-I/JWL EOS
ra
            = rav
        ra2
             = ra*ra
        ea
            = eav
        za
            = zav
        rz = ra*za
        omz = 1d0 - za
c Solid phase limit
        if (za .le. ztol1) then
          dpdr = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0))
             / r0**alfa
          dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4
              * ((ra/r0)**alfa)
   &
        Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
dpde = gh
c Mixed phases
            else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator functions
             bot = omz/gh + 1d0/wj/ra
             if (bot .lt. 1d-10) then
               write(*,*) ' '
               write(*,*) ' Zero denonimator term.'
               write(*,*) ' '
                stop
              endif
             bot2 = bot*bot
             botr = -1d0/wj/ra2
             botz = -1d0/gh
c Evaluate numerator functions
             top(1) = ea
              top(2) = omz - r0/ra
              top(3) = (omz**nh)*((ra/r0)**alfa)
              top(4) = omz
              top(5) = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
              top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
              top(7) = za
c Compute derivatives for numerator functions
              topr(1) = 0d0
              topr(2) = r0/ra2
              topr(3) = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0))
             topr(4) = 0d0
              topr(5) = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2
              topr(6) = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2
              topr(7) = 0d0
              topz(1) = 0d0
              topz(2) = -1d0
              topz(3) = -nh*((omz*ra/r0)**alfa)
              topz(4) = -1d0
              topz(5) = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-
rh1/rz)
              topz(6) = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-
rh2/rz)
              topz(7) = 1d0
c Compute density and internal energy derivatives of pressure
             dpdr = 0d0
              dpdz = 0d0
              do nn = 1,7
               dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn))
                dpdz = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn))
              enddo
              dpdr = dpdr/bot2
              dpdz = dpdz/bot2
              dpde = 1d0/bot
```

```
c Gas phase limit
          else
            dpdr = wj*ei(i)
                 + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra)
    &
    &
                 + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra)
    &
                 + wj*(qdet0 + e0)
            dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra)
    &
                 + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra)
    S.
                 + ra*wj*(qdet0 + e0)
            dpde = wj*ra
          endif
         else if (ieos .eq. 3) then
c Hayes-II/JWL EOS
= rav
          ra
          ra2 = ra*ra
          ea
               = eav
               = zav
          7.a
          rz
               = ra*za
          omz = 1d0 - za
c Solid phase limit
          if (za .le. ztol1) then
            dpdr = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0))
                / r0**alfa
    &
                + h1/r0*((ra/r0)**nhm1)
    &
            dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4
                 * ((ra/r0) **alfa)
    &
    &
                + h1/nh*(1d0 - nhp1*((ra/r0)**nh))
            dpde = gh
c Mixed phases
          else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator functions
            bot = omz/gh + 1d0/wj/ra
            if (bot .lt. 1d-10) then
              write(*,*) ' '
              write(*,*) ' Zero denonimator term.'
              write(*,*) ' '
              stop
            endif
            bot2 = bot*bot
            botr = -1d0/wj/ra2
            botz = -1d0/qh
```

c Evaluate numerator functions

```
top(1) = ea
              top(2) = omz - r0/ra
              top(3) = (omz**nh)*((ra/r0)**alfa)
              top(4) = omz
              top(5) = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
              top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
              top(7) = za
              top(8) = (omz**nhp1)*((ra/r0)**nh) + za - 1d0
c Compute derivatives for numerator functions
             topr(1) = 0d0
              topr(2) = r0/ra2
              topr(3) = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0))
              topr(4) = 0d0
              topr(5) = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2
              topr(6) = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2
              topr(7) = 0d0
              topr(8) = nh/r0*(omz**nhp1)*((ra/r0)*nhm1)
              topz(1) = 0d0
              topz(2) = -1d0
              topz(3) = -nh*((omz*ra/r0)**alfa)
              topz(4) = -1d0
              topz(5) = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-
rh1/rz)
              topz(6) = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-
rh2/rz)
              topz(7) = 1d0
              topz(8) = 1d0 - nhp1*((ra/r0*omz)**nh)
c Compute density and internal energy derivatives of pressure
              dpdr = 0d0
              dpdz = 0d0
              do nn = 1,8
                dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn))
                dpdz = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn))
              enddo
              dpdr = dpdr/bot2
              dpdz = dpdz/bot2
              dpde = 1d0/bot
c Gas phase limit
            else
              dpdr = wj*ei(i)
                   + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra)
     &
                   + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra)
     &
     &
                   + wj*(qdet0 + e0)
              dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra)
                   + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra)
     &
                   + ra*wj*(qdet0 + e0)
     &
              dpde = wj*ra
            endif
```

```
else
            write(*,*) ' '
            write(*,*) ' Unknown EOS'
            write(*,*) ' '
            stop
          endif
c Calculate averaged speed of sound
          if (dpdr .lt. 0d0) dpdr = dabs(dpdr)
          a2 = dpdr + pav*dpde/rav/rav
          if (a2 .lt. 0d0) then
            write(*,*) ' a2 < 0 !'
            write(*,*) ' i = ',i
            write(*,*) ' eav = ',eav
            write(*,*) 'el = ',el
write(*,*) 'er = ',er
            write(*,*) ' rav = ', rav
            write(*,*) ' pav = ', pav
            write(*,*) ' pl = ',pl
            write(*,*) ' pr = ',pr
            write(*,*) ' zav = ',zav
            write(*,*) ' dpdr = ', dpdr
            write(*,*) ' dpde = ', dpde
            write(*,*) ' '
            write(*,*) ' r+1 = ',rp(i)
            write(*,*) ' u+1 = ',up(i)
            write(*,*) ' p+1 = ',pp(i)
write(*,*) ' z+1 = ',zp(i)
            write(*,*) ' '
            write(*,*) ' r-1 = ',rp(i-1)
            write(*,*) 'u-1 = ',up(i-1)
            write(*,*) ' p-1 = ', pp(i-1)
            write(*,*) z-1 = z, zp(i-1)
            write(*,*) ' '
            stop
          endif
          aav = dsqrt(a2)
          if (idbgf .eq. 1) then
          write(*,*) ' rav = ',rav
          write(*,*) ' uav = ',uav
          write(*,*) 'zav = ',zav
          write(*,*) ' eav = ',eav
          write(*,*) ' hav = ',hav
          write(*,*) ' pav = ',pav
          write(*,*) ' aav = ',aav
          write(*,*) ' '
          endif
c Eigenvalues
          aeg(1) = dabs(uav - aav)
          aeq(2) = dabs(uav)
          aeg(3) = dabs(uav)
          aeg(4) = dabs(uav + aav)
```

```
if (idbgf .eq. 1) then
          write(*,*) ' aeg1 = ',aeg(1)
          write(*,*) ' aeg2 = ',aeg(2)
          write(*,*) ' aeg3 = ',aeg(3)
          write(*,*) ' aeg4 = ',aeg(4)
          write(*,*) ' '
          pause
          endif
c Right eigenvectors
          evr(1,1) = 1d0
          evr(1,2) = 1d0
          evr(1,3) = 1d0
          evr(1,4) = 1d0
          evr(2,1) = uav - aav
          evr(2,2) = uav
          evr(2,3) = uav
          evr(2,4) = uav + aav
          evr(3,1) = hav - uav*aav
          evr(3,2) = hav - rav*a2/dpde + zav*dpdz/dpde
          evr(3,3) = hav - rav*a2/dpde + (zav - 1d0)*dpdz/dpde
          evr(3,4) = hav + uav*aav
          evr(4,1) = zav
          evr(4,2) = 0d0
          evr(4,3) = 1d0
          evr(4,4) = zav
          if (idbgf .eq. 1) then
          write(*,*) 'EVR:'
          write (*,71) evr (1,1), evr (1,2), evr (1,3), evr (1,4)
          write (*,71) evr(2,1), evr(2,2), evr(2,3), evr(2,4)
          write (*,71) evr (3,1), evr (3,2), evr (3,3), evr (3,4)
          write(*,71) evr(4,1), evr(4,2), evr(4,3), evr(4,4)
          write(*,*) ' '
          endif
c |R|
          detr = -2d0*rav*a2*aav/dpde
c Compute primitive variables differences
          delr = rr - rl
          delv = ur - ul
          delp = pr - pl
          delz = zr - zl
c Compute characteristic wave magnitudes
          omz = 1d0 - zav
          cwm(1) = c12*(delp/aav/aav - rav*delv/aav)
          cwm(2) = omz*(delr - delp/aav/aav) - rav*delz
          cwm(3) = zav*(delr - delp/aav/aav) + rav*delz
          cwm(4) = c12*(delp/aav/aav + rav*delv/aav)
c Compute R |eg| L dq
          do 1 = 1,4
```

```
vn(1) = 0d0
            do m = 1, 4
              vn(1) = vn(1) + aeg(m) *cwm(m) *evr(1, m)
            enddo
          enddo
          if (idbgf .eq. 1) then
          write(*,*) ' vn1 = ', vn(1)
          write(*,*) ' vn2 = ', vn(2)
          write(*,*) ' vn3 = ',vn(3)
          write(*,*) ' vn4 = ', vn(4)
          write(*,*) ' '
          endif
c Compute the Euler flux
          fl(1) = rl*ul
          fl(2) = rl*ul*ul + pl
          fl(3) = rl*ul*hhl
          fl(4) = rl*ul*zl
          fr(1) = rr*ur
          fr(2) = rr*ur*ur + pr
          fr(3) = rr*ur*hhr
          fr(4) = rr*ur*zr
c Compute numerical flux
          do 1 = 1,4
            fn(i,1) = 0.5d0*(fl(1) + fr(1) - vn(1))
          enddo
          if (idbgf .eq. 1) then
          write(*,*) ' FL:'
          write(*,*) ' fl1 = ',fl(1)
          write(*,*) ' fl2 = ',fl(2)
          write(*,*) ' fl3 = ',fl(3)
          write(*,*) ' fl4 = ',fl(4)
          write(*,*) ' '
          write(*,*) ' FR:'
          write(*,*) ' fr1 = ',fr(1)
          write(*,*) ' fr2 = ',fr(2)
          write(*,*) ' fr3 = ',fr(3)
          write(*,*) ' fr4 = ',fr(4)
          write(*,*) ' '
          write(*,*) ' FN:'
          write(*,*) ' fn1 = ',fn(i,1)
          write(*,*) ' fn2 = ',fn(i,2)
          write(*,*) ' fn3 = ',fn(i,3)
          write(*,*) ' fn4 = ',fn(i,4)
          write(*,*) ' '
          pause
          endif
        enddo
```

 c Advance the solution in time

```
do i = 1, imax-1
         do 1 = 1,4
            dqv(1) = dt/dx*(fn(i+1,1) - fn(i,1))
         do 1 = 1,4
            qvp(i,l) = qv(i,l) - dqv(l) + dt*s(i,l)
        enddo
c Extract primitive variables
        do i = 1, imax-1
         rp(i) = qvp(i,1)
         up(i) = qvp(i,2)/qvp(i,1)
         etp(i) = qvp(i,3)/qvp(i,1)
         zp(i) = qvp(i,4)/qvp(i,1)
          zp(i) = min(zp(i),1d0)
         zp(i) = max(zp(i),0d0)
         if (zp(i) .lt. 1d-99) zp(i) = 0d0
         if (zp(i) .ge. 0.99d0) zp(i) = 1d0
         eip(i) = etp(i) - 0.5d0*up(i)*up(i)
         tk(i) = tk0
         if (rp(i) .le. 0d0) then
            write(*,*) ' '
            write(*,*) ' Negative/Zero density'
            write(*,*) ' i = ',i
            write(*,*) ' r = ',rp(i)
            write(*,*) ' u = ',up(i)
            write(*,*) ' e = ',etp(i)
            write(*,*) ' z = ', zp(i)
            write(*,*) ' '
            write(*,*) ' Program STOP'
            write(*,*) ' '
            stop
          endif
c If internal energy is negative, apply a fix
         if (eip(i) .le. 0d0) then
            write(*,*) ' '
С
            write(*,*) ' Negative/Zero internal energy'
С
            write(*,*) 'i = ',i
С
           write(*,*) ' r = ',rp(i)
С
           write(*,*) ' u = ',up(i)
С
           write(*,*) ' E = ',etp(i)
С
                            = ',eip(i)
           write(*,*) ' e
С
            write(*,*) ' z
                            = ',zp(i)
С
```

```
write(*,*) ' '
          write(*,*) ' iefx = ',iefx
          if (iefx .eq. 0) then
c Absolute value |e| fix
           eip(i) = dabs(eip(i))
          else if (iefx .eq. 1) then
c Pressure estimation fix
c Estimate pressure using JWL EOS
           pest = aj*dexp(-rh1/rp(i)) + bj*dexp(-rh2/rp(i))
                 + cjh*(rp(i)**(1d0 + wj))
c Compute detonation e based on JWL pressure
           eip(i) = 1d0/wj/rp(i)*
                 (cjh*(rp(i)**(1d0 + wj))
    &
                 + aj*wj*rp(i)/rh1*dexp(-rh1/rp(i))
                 + bj*wj*rp(i)/rh2*dexp(-rh2/rp(i)))
           write(*,*) ' '
С
           write(*,*) ' pest = ',pest
C
           write(*,*) ' eest = ',eip(i)
С
С
           pause
          else if (iefx .eq. 2) then
c Time-lagged velocity fix
           eip(i) = etp(i) - 0.5d0*u(i)*u(i)
          else if (iefx .eq. 3) then
c Zero kinetic energy fix
           eip(i) = etp(i)
          else
           write(*,*) ' '
           write(*,*) ' Unknown iefx value.'
           write(*,*) ' '
           stop
          endif
         pause
        endif
c Calculate pressure and its derivatives
if (ieos .eq. 0) then
c CPG EOS
pp(i) = gam1*rp(i)*eip(i) + gam1*rp(i)*zp(i)*qdet0
          dpdr
               = gam1*eip(i) + gam1*zp(i)*qdet0
          dpde
              = qam1*rp(i)
          dpdz
               = qam1*rp(i)*qdet0
        else if (ieos .eq. 1) then
          Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
c JWL EOS
rht = rp(i)/r0
         rhti = 1d0/rht
         ri = 1d0/rp(i)
         tmp = aj*(1d0 - wr1*rp(i))*dexp(-rh1*ri)
         tmp = tmp + bj*(1d0 - wr2*rp(i))*dexp(-rh2*ri)
         pp(i) = tmp + wj*rp(i)*eip(i) + wj*rp(i)*zp(i)*qdet0
         tmp = aj*(rh1*ri*ri - wj*ri - wj/rh1)*dexp(-rh1*ri)
         tmp = tmp + bj*(rh2*ri*ri - wj*ri - wj/rh2)*dexp(-rh2*ri)
         dpdr = tmp + wj*eip(i) + wj*zp(i)*qdet0
         dpde = wj*rp(i)
         dpdz = wj*rp(i)*qdet0
        else if (ieos .eq. 2) then
c Hayes-I/JWL EOS
ra = rp(i)
         ra2 = ra*ra
         ea = eip(i)
             = zp(i)
         za
             = ra*za
         rΖ
             = 1d0 - za
         omz
c Solid phase limit
         if (za .le. ztol1) then
c Compute pressure and its derivatives
           pp(i) = gh*(ea - beta*r0/ra - t4*((ra/r0)**alfa)
    &
                + t7)
           dpdr = beta*r0*qh/ra2 - alfa*qh*t4*(ra**(alfa-1d0))
    &
               /(r0**alfa)
           dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4
    Ÿ
               * ((ra/r0) **alfa)
           dpde = gh
c Mixed phases
         else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator functions
           bot = omz/gh + 1d0/wj/ra
           if (bot .1t. 1d-10) then
            write(*,*) ' '
            write(*,*) ' Zero denonimator term.'
            write(*,*) ' '
            stop
           endif
```

```
bot2 = bot*bot
              botr = -1d0/wj/ra2
              botz = -1d0/gh
c Evaluate numerator functions
              top(1) = ea
              top(2) = omz - r0/ra
              top(3) = (omz**nh)*((ra/r0)**alfa)
              top(4) = omz
              top(5) = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
              top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
              top(7) = za
c Compute derivatives for numerator functions
              topr(1) = 0d0
              topr(2) = r0/ra2
              topr(3) = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0))
              topr(4) = 0d0
              topr(5) = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2
              topr(6) = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2
              topr(7) = 0d0
              topz(1) = 0d0
              topz(2) = -1d0
              topz(3) = -nh*((omz*ra/r0)**alfa)
              topz(4) = -1d0
              topz(5) = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-
rh1/rz)
              topz(6) = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-
rh2/rz)
              topz(7) = 1d0
c Compute pressure and its derivatives
              pp(i) = 0d0
              dpdr = 0d0
              dpdz = 0d0
              do nn = 1,7
                pp(i) = pp(i) + c(nn)*top(nn)
                dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn))
                dpdz = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn))
              enddo
              pp(i) = pp(i)/bot
              dpdr = dpdr/bot2
              dpdz = dpdz/bot2
              dpde = 1d0/bot
c Gas phase limit
            else
c Compute pressure and its derivatives
              pp(i) = wj*ra*ea
     &
                    + aj*(1d0 - wj*ra/rh1)*dexp(-rh1/ra)
     &
                    + bj*(1d0 - wj*ra/rh2)*dexp(-rh2/ra)
     &
                    + wj*ra*(qdet0 + e0)
              dpdr = wj*ea
                   + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra)
     &
            Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
+ bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra)
    &
    δ
                 + wj*(qdet0 + e0)
            dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra)
                 + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra)
    &
    &
                 + ra*wj*(qdet0 + e0)
            dpde = wj*ra
          endif
         else if (ieos .eq. 3) then
c Hayes-II/JWL EOS
ra
               = rp(i)
          ra2
               = ra*ra
          ea
               = eip(i)
               = zp(i)
          za
               = ra*za
          ΥZ
          omz = 1d0 - za
c Solid phase limit
          if (za .le. ztol1) then
c Compute pressure and its derivatives
            pp(i) = gh*(ea - beta*r0/ra - t4*((ra/r0)**alfa)
                  + t7)
    &
                  + h1/nh*(((ra/r0)**nh) - 1d0)
    &
            dpdr = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0))
    &
                  /(r0**alfa)
                  + h1/r0*((ra/r0)**nhm1)
    &
            dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4
                  * ((ra/r0)**alfa)
    &
    &
                  + h1/nh*(1d0 - nhp1*((ra/r0)**nh))
            dpde = gh
c Mixed phases
          else if (ztol1 .lt. za .and. za .lt. ztol2) then
c Evaluate denominator functions
            bot = omz/gh + 1d0/wj/ra
            if (bot .lt. 1d-10) then
              write(*,*) ' '
              write(*,*) ' Zero denonimator term.'
              write(*,*) ' '
              stop
            endif
            bot2 = bot*bot
            botr = -1d0/wj/ra2
            botz = -1d0/qh
c Evaluate numerator functions
```

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

```
top(1) = ea
              top(2) = omz - r0/ra
              top(3) = (omz**nh)*((ra/r0)**alfa)
              top(4) = omz
              top(5) = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz)
              top(6) = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz)
              top(7) = za
              top(8) = (omz**nhp1)*((ra/r0)**nh) + za - 1d0
c Compute derivatives for numerator functions
             topr(1) = 0d0
              topr(2) = r0/ra2
              topr(3) = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0))
              topr(4) = 0d0
              topr(5) = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2
              topr(6) = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2
              topr(7) = 0d0
              topr(8) = nh/r0*(omz**nhp1)*((ra/r0)**nhm1)
              topz(1) = 0d0
              topz(2) = -1d0
              topz(3) = -nh*((omz*ra/r0)**alfa)
              topz(4) = -1d0
              topz(5) = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-
rh1/rz)
              topz(6) = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-
rh2/rz)
              topz(7) = 1d0
              topz(8) = 1d0 - nhp1*((ra/r0*omz)**nh)
c Compute pressure and its derivatives
             pp(i) = 0d0
              dpdr = 0d0
              dpdz = 0d0
              do nn = 1,8
               pp(i) = pp(i) + c(nn)*top(nn)
                dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn))
                dpdz = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn))
              enddo
              pp(i) = pp(i)/bot
              dpdr = dpdr/bot2
              dpdz = dpdz/bot2
              dpde = 1d0/bot
c Gas phase limit
            else
c Compute pressure and its derivatives
             pp(i) = wj*ra*ea
     &
                    + aj*(1d0 - wj*ra/rh1)*dexp(-rh1/ra)
     &
                    + bj*(1d0 - wj*ra/rh2)*dexp(-rh2/ra)
     &
                    + wj*ra*(qdet0 + e0)
              dpdr = wj*ea
                   + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra)
     &
     &
                   + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra)
                   + wj*(qdet0 + e0)
     &
```

```
dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra)
                    + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra)
                    + ra*wj*(qdet0 + e0)
              dpde = wj*ra
            endif
          else
            write(*,*) ' '
            write(*,*) ' Unknown EOS'
            write(*,*) ' '
            stop
          endif
c Check for negative pressure
          if (pp(i) .lt. 0d0) then
            write(*,*) ' '
            write(*,*) ' Negative pressure detected.'
            write(*,*) ' i = ',i
            write(*,*) ' r = ',rp(i)
            write(*,*) ' u = ',up(i)
            write(*,*) ' p = ',pp(i)
            write(*,*) 'z = ',zp(i)
            write(*,*) ' ea= ',ea
            write(*,*) ' '
            write(*,*) ' r-1 = ', rp(i-1)
            write(*,*) ' u-1 = ', up(i-1)
            write(*,*) 'p-1 = ',pp(i-1)
            write(*,*) \cdot z-1 = ', zp(i-1)
            write(*,*) ' '
            write(*,*) ' Program STOP'
            write(*,*) ' '
            stop
          endif
c Calculate the speed of sound
          derv(i,1) = dpdr
          derv(i, 2) = dpde
          if (dpdr .lt. 0d0) dpdr = dabs(dpdr)
          a2 = dpdr + pp(i)*dpde/rp(i)/rp(i)
          if (a2 .le. 0d0) then
            write(*,*) ' '
            write(*,*) ' Negative squared sound speed!'
            write(*,*) 'i = ',i
            write(*,*) ' dpdr = ', dpdr
            write(*,*) ' dpde = ', dpde
            write(*,*) ' pp = ',pp(i)
            write(*,*) ' rp = ',rp(i)
            write(*,*) ' a2 = ',a2
            write(*,*) ' '
            stop
          endif
          ap(i)
                  = dsqrt(a2)
            Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
c Estimate mixture temperature Hayes-II/JWL EOS only
item = 0
       if (ieos .eq. 3) then
         item = 1
         dtkmx = 0d0
         denmx = 0d0
c First temperature estimate
         do i = 1, imax-1
           if (zp(i) .gt. ztol2) then
             omz = 0d0
           else
             omz = 1d0 - zp(i)
           endif
           denm = cvs*omz + cvg*zp(i)
           if (denm .gt. denmx) denmx = denm
           de1 = 0d0
           de2 = 0d0
           de3 = 0d0
           de4 = 0d0
           de5 = 0d0
           de6 = 0d0
           if (zp(i) .lt. 0.999d0) then
С
           if (zp(i) .lt. ztol2) then
            rs = omz*rp(i)
             de1 = t4*(((rs/r0)**alfa) - 1d0)
             de2 = beta*(1d0 - r0/rs)
           endif
           if (zp(i) .gt. 0.001d0) then
           if (zp(i) .gt. ztol1) then
             rg = zp(i)*rp(i)
             de3 = aj/rh1*dexp(-rh1/rg)
             de4 = bj/rh2*dexp(-rh2/rg)
             de5 = aj/rh1*dexp(-rh1/r0)
             de6 = bj/rh2*dexp(-rh2/r0)
           endif
           numr = eip(i) - omz*(de1 - de2)
    &
                - zp(i)*(de3 + de4 - de5 - de6 - qdet0)
    &
                + e0cr)
           dtk(i) = numr/denm
           write(*,*) ' zp = ', zp(i)
C
           write(*,*) ' de1 = ', de1
С
           write(*,*) ' de2 = ', de2
С
           write(*,*) ' de3 = ', de3
С
           write(*,*) ' de4 = ', de4
С
           write(*,*) ' de5 = ', de5
           Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
write(*,*) ' de6 = ',de6
С
           write(*,*) ' numr = ', numr,' dtk = ', dtk(i)
С
           pause
           if (dtk(i) .lt. dtkmx) dtkmx = dtk(i)
         enddo
c Check the temperature difference (is T < T0?)
         if (dtkmx .lt. 0d0) then
           item = -1
c Calculate the internal energy correction (fwded to next time level)
           e0cr = dtkmx*denmx/eta
c Apply the temperature correction
           do i = 1, imax-1
             omz = 1d0 - zp(i)
denm = cvs*omz + cvg*zp(i)
             dtk(i) = dtk(i) - e0cr/denm
           enddo
         endif
c Calculate the corrected temperature field
         do i = 1, imax-1
           tk(i) = tk0 + dtk(i) - dtk(imax-1)
С
           tk(i) = dtk(i)
         enddo
       endif
c Update particle properties and positions
if (ipar .eq. 1) then
         do np = 1, npar
c Compute Reynolds number
           ra = rp(pcel(np))*zp(pcel(np))
           delu = up(pcel(np)) - pu(np)
           adelu = dabs(delu)
           if (adelu .lt. 1d-10) adelu = 1d-10
           rep = dip*ra*adelu/mu
           write(*,*) ' rep = ',rep
C
           if (rep .le. 0d0) then
С
             write(*,*) ' '
С
             write(*,*) ' Rep <= 0!'
С
             write(*,*) ' cell = ',pcel(np)
С
             write(*,*) ' rp = ', rp(pcel(np))
C
             write(*,*) 'zp = ',zp(pcel(np))
С
             write(*,*) ' ra = ',ra
С
             write(*,*) ' delu = ', delu
С
             write(*,*) ' adelu = ',adelu
С
             write(*,*) ' rep = ',rep
С
           Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
write(*,*) ' '
С
С
              stop
            endif
c Compute particle accelerations
            if (idrg .eq. 0) then
c Spray drag law
              if (rep .lt. 1d-10) then
                cdp = 0d0
              else if (rep .le. 1d3) then
                cdp = 24d0/rep*(1d0 + (rep**c23)/6d0)
                cdp = 0.44d0
              endif
              pa(np) = c316*mu*cdp*rep/rop/rdp*delu
            else if (idrg .eq. 1) then
c Rocket drag law
              if (rep .lt. 1d-10) then
                cd1 = 0d0
                 cd2 = 0d0
              else
                cd1 = 24d0/rep + 4.4d0/dsqrt(rep) + 0.42d0
                cd2 = c43*(1.75d0 + 150d0*alf21/rep)/alf1
              endif
              if (alf2 .le. 0.08d0) then
                 cd0 = cd1
              else if (0.08d0 .lt. alf2 .and. alf2 .lt. 0.45d0) then
                 cd0 = (0.45d0-alf2)*cd1 + (alf2-0.08d0)*cd2
                 cd0 = cd0/0.37d0
              else if (alf2 .gt. 0.45d0) then
                cd0 = cd2
              endif
c Mach correction
              if (imach .eq. 1) then
                mach = (adelu/ap(i))**4.63d0
                cdp = cd0*(1d0 + dexp(-0.427d0/mach))
              else
                 cdp = cd0
              endif
              pa(np) = c18*pi*dip*dip*cdp*ra*adelu*delu/p0mas
            else
              write(*,*) ' '
              write(*,*) ' Unknown drag law.'
              write(*,*) ' '
              stop
            endif
С
            write(*,*) ' rep = ',rep
            write(*,*) ' cdp = ',cdp
С
            write(*,*) ' pa = ',pa(np)
С
            Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
```

```
write(*,*) ' '
С
c Compute particle velocity
          pup(np) = pu(np) + dt*pa(np)
c Compute particle position
          pxp(np) = px(np) + dt*pup(np)
c Set default particle temperature
          ptkp(np) = tk0
c Update particle heat transfer and temperature
          if (ieos .eq. 3) then
c Compute the Nusselt number based on particle Reynolds number
            if (rep .le. 2d2) then
              nup = 2d0 + 0.106d0*rep*crppr
            else
              nup = 2.274d0 + 0.6d0*(rep**0.76d0)*crppr
            endif
c Compute the heat transfer coefficient
            hp = tcon*nup/dip
c Compute the heat transfer coupling term
            pq(np) = hp*pi*dip*dip*(tk(pcel(np)) - ptk(np))
c Compute the particle temperature change
            dtp
                    = dt*pq(np)
            ptkp(np) = ptk(np) + dtp
          endif
c Check particle bounds
          if (pxp(np) .lt. x1) then
            pxp(np) = x1
С
            write(*,*) ' Particle ',np,' out of bounds.'
С
С
            stop
          endif
С
C
          if (pxp(np) .gt. x2) then
С
            pxp(np) = x2
            write(*,*) ' Particle ',np,' out of bounds.'
C
С
            stop
          endif
        enddo
       endif
c Update time and iteration number
= n + 1
       n
       time = time + dt
       write(*,*) nstart+n,' ',dt,' ',time,' ',item
       write(*,*) 'pum = ',pum
```

```
c Solution and restart file output
if (mod(n, ndmp) .eq. 0) then
         nfil = nfil + 1
c Solution file
 90
         format('sol ',i3.3,'.data')
         write(filex, 90) nfil
         open(22, file=filex, form='formatted')
         write(22,*) '# ',time
         do i = 1, imax-1
           xc = c12*(x(i) + x(i+1))
           write(22,72) xc,rp(i),up(i),pp(i),zp(i),eip(i),ap(i),
    Ÿ
                       rxr(i), tk(i)
         enddo
         close(22)
c Particle file
91
         format('par ',i3.3,'.data')
         if (ipar .eq. 1) then
           write(parex, 91) nfil
           open (22, file=parex, form='formatted')
           do np = 1, npar
            write(22,*) pxp(np),' ',pup(np),' ',ptkp(np)
           enddo
           close(22)
         endif
c Derivatives file
         open(22, file='deriv.data', form='formatted')
         do i = 1, imax-1
           write(22,*) i,' ',derv(i,1),' ',derv(i,2)
         enddo
         close(22)
c L/R Z files
         open(22, file='zlzr.data', form='formatted')
С
         do i = 1, imax
          write(22,*) i,' ',zzl(i),' ',zzr(i)
         enddo
С
         close(22)
c Restart file
         open(40, file='restart.data', form='unformatted')
         write(40) nstart+n
         write(40) nfil
         write(40) time
         do i = 1, imax-1
           write(40) rp(i),pp(i),up(i),zp(i)
         enddo
         close(40)
       endif
c Reset arrays
```

```
do i = 1, imax-1
        r(i) = rp(i)
        u(i) = up(i)
        z(i) = zp(i)
        ei(i) = eip(i)
        p(i) = pp(i)
        a(i) = ap(i)
      enddo
92
    format (2x, d15.9, 2x, d15.9, 2x, d15.9, 2x, d15.9, 2x, i5)
      if (ipar .eq. 1) then
        do np = 1, npar
          px(np) = pxp(np)
          pu(np) = pup(np)
          ptk(np) = ptkp(np)
          if (idbgp .eq. 1) write(110+np,92) time,pxp(np),
                         pup(np),pa(np),pcel(np)
    &
        enddo
      endif
С
      pause
c End of solver loop
enddo
c Termination codes
     if (time .gt. tend) then
      write(*,*) ' '
      write(*,*) ' TIME > TEND.'
     else if (n .ge. nstp) then
      write(*,*) ' '
      write(*,*) ' N > NSTP.'
     else
      write(*,*) ' UNKNOWN TERMINATION CRITERIA.'
     endif
c End of main program
     stop
     end
```

DISTRIBUTION LIST AFRL-RW-EG-TR-2011-159

Defense Technical Information Center

1 Electronic Copy (1 file, 1 format)

Attn: Acquisition (OCA)

8725 John J. Kingman Road, Ste 0944

Ft Belvoir, VA 22060-6218

EGLIN AFB OFFICES:

AFRL/RWOC (STINFO Tech Library Copy) 1 Copy

AFRL/RW CA-N Notice of publication only

AFRL/RWG - 1 Copy AFRL/RWM - 1 Copy AFRL/RWA - 1 Copy